Submanifolds of a nearly Kähler 6-dimensional sphere

HIDEYA HASHIMOTO
Department of Mathematics, Faculty of Science, Meijo University, Nagoya, 468-8502,
Japan.
e-mail: hhashi@ccmfs.meijo-u.ac.jp

KOUEI SEKIGAWA
Department of Mathematics, Faculty of Science, Niigata University, Niigata, 950-2181,
Japan
e-mail: sekigawa@sc.niigata-u.ac.jp

(2000 AMS Mathematics Subject Classification : 53C15, 53C25, 53C35.)

1. Introduction

It is well-known that a 6-dimensional unit sphere S^6 admits a nearly Kähler structure $(J, < , >)$ and can be expressed by $S^6 = G_2/SU(3)$ as a homogeneous almost Hermitian manifold, where G_2 is the compact Lie group of all automorphisms of the octonions \mathbb{C} (known also as the Cayley division algebra). This article is a brief survey on the several classes of submanifolds, that is, J-holomorphic curves (called also as almost complex submanifolds), totally real submanifolds and CR-submanifolds in S^6, and the intermediate relationships. In [3], Bolton, Vracken and Woodward have divided the J-holomorphic curves in 4 classes, $I \sim IV$. The class I is linearly full super-minimal J-holomorphic curves, the class II is linear full, but not super-minimal J-holomorphic curves, the class III is linearly full in some totally geodesic S^5 in S^6 (then necessarily not super-minimal) and the class IV is totally geodesic J-holomorphic curves. We note that any example of the class II has been not obtained up to our knowledge. §3 will be devoted to a brief survey on J-holomorphic curves in S^6. In §4 we discuss 3-dimensional totally real submanifolds and CR-submanifolds in S^6, and further their intermediate relationships. In §5, we discuss 4-dimensional CR-submanifolds in S^6. In particular, we introduce some interesting examples of such submanifolds. The present article is much indebted to ([19]).

2. Preliminaries

First, we shall recall the definition of the almost complex structure of the 6-dimensional sphere. To do this, we recall the fundamental relations between
the quaternions and the octonions (or called as the Cayley algebra). Let $\mathbf{H} = \text{span}_\mathbb{R}\{1, i, j, k\}$ be the quaternions with its canonical basis $1, i, j, k$ which satisfy
\[
i^2 = j^2 = k^2 = -1, \quad ij = -ji = k, \quad ki = -ik = j, \quad jk = -kj = i.
\]

Next, let \mathbb{C} be the octonions and $\text{Im}\mathbb{C}$ be the its pure imaginary part, respectively. The octonions \mathbb{C} can be identified with the direct sum of the two quaternions $\mathbf{H} \oplus \mathbf{H}$ with the following multiplication. We represent $(a, b) \in \mathbf{H} \oplus \mathbf{H}$ as $a + b\varepsilon$.

\[
(a + b\varepsilon)(c + d\varepsilon) = (ac - \overline{db}) + (da + b\overline{c})\varepsilon.
\]

where a, b, c, d are quaternions and $\varepsilon = (0, 1) \in \mathbf{H} \oplus \mathbf{H}$, and \overline{a} is the conjugate of a. With respect to this multiplication, the octonions \mathbb{C} is an non-commutative, non-associative, alternative (the multiplication satisfy $(xy)y = xy^2, (xy)x = x(yx), y(yx) = y^2x$) division algebra. We denote \langle , \rangle the canonical inner product on 8-dimensional Euclidean space. Then the multiplication of the octonions and the inner product satisfy the following (which is called the normed algebra by Harvey-Lawson [15])
\[
\langle xy, xy \rangle = \langle x, x \rangle \langle y, y \rangle
\]
where x, y are octonions. We can define the exterior product $x \times y$ by $x \times y = (1/2)(\overline{xy} - xy) \in \text{Im}\mathbb{C}$, where $\overline{x} = 2 < x, 1 > -x$ is the conjugate of x in \mathbb{C}. If $x \in \text{Im}\mathbb{C}$ then we have $\overline{x} = -x$. More we assume that $x, y \in \text{Im}\mathbb{C}$ and $\langle x, y \rangle = 0$, then $x \times y = xy$.

We define the tenor field J of type $(1,1)$, on the 6-dimensional sphere $S^6 = \{x \in \text{Im}\mathbb{C} | \langle x, x \rangle = 1\}$ by;
\[
J_x X = X \times x
\]
for any $X \in T_xS^6, x \in S^6$. Then we see that $J_x^2 = -I$ and J is orthogonal with respect to the induced metric. We define the section J of the bundle of the endomorphisms $\text{End}(TS^6)$ of the tangent bundle TS^6, such that $J(x) = J_x$.

Then $(S^6, J, \langle , \rangle)$ is an almost Hermitian manifold. The group of automorphism of the almost Hermitian structure $\text{Aut}(S^6, J, \langle , \rangle) = \{ f | f : S^6 \to S^6 \text{ isometry with } f_* \circ J = J \circ f_* \}$ coincides with $G_2 = \{g \in SO(7) | g(uv) = g(u)g(v) \text{ for any } u, v \in \mathbb{C}\}$.

Next, we shall give the multiplication table of the octonions. We set the basis of the octonions as follows; $e_0 = (1, 0), e_1 = (i, 0), e_2 = (j, 0), e_3 = (k, 0), e_4 = (0, 1) = \varepsilon, e_5 = (0, i) = i\varepsilon, e_6 = (0, j) = j\varepsilon, e_7 = (0, k) = k\varepsilon$. Then we have

The element of the exceptional Lie group G_2 is obtained by the following manner, which may be compared with orthonormalization process by Gram-Schmidt.
Submanifolds of a nearly Kähler 6-dimensional sphere

Lemma 2.1

Let a_1, a_2 be an orthonormal pair of $\text{Im} \mathfrak{C}$, and put $a_3 = a_1 a_2$. We set a unit vector a_4 of $\text{Im} \mathfrak{C}$ which is orthogonal to the associative plane spanned by $\{ a_1, a_2, a_3 \}$. Next we put $a_5 = a_1 \cdot a_4$, $a_6 = a_2 \cdot a_4$, $a_7 = a_3 \cdot a_4$. Then

$$g = (a_1, a_2, a_3, a_4, a_5, a_6, a_7) \in SO(7)$$

is an element of G_2 and satisfy $g \cdot e_4 = a_4$.

In fact, we can easily see that the multiplication table of $\{ a_1, a_2, a_3, a_4, a_5, a_6, a_7 \}$ can be obtained by replacing e_i by a_i in the above multiplication table.

Next, we shall give the Lie algebra \mathfrak{g}_2 of G_2 as a Lie subalgebra of $\mathfrak{so}(7)$. To do this, we take the basis G_{ij} ($1 \leq i \neq j \leq 7$) of $\mathfrak{so}(7)$ which is defined by

$$G_{ij}(e_k) = \begin{cases}
 e_i, & \text{if } k = j, \\
 -e_j, & \text{if } k = i, \\
 0, & \text{otherwise}.
\end{cases}$$

Then the Lie algebra \mathfrak{g}_2 coincide with the subspace of $\mathfrak{so}(7)$ which is spanned by

$$aG_{23} + bG_{45} + cG_{76},$$

$$aG_{31} + bG_{46} + cG_{57},$$

$$aG_{12} + bG_{47} + cG_{65},$$

$$aG_{51} + bG_{73} + cG_{62},$$

$$aG_{14} + bG_{72} + cG_{36},$$

$$aG_{17} + bG_{24} + cG_{53},$$

$$aG_{61} + bG_{34} + cG_{25},$$

(2.1)

where $a, b, c \in \mathbb{R}$ satisfy $a + b + c = 0$. By Lemma 2.1, we see that G_2 acts transitively on S^6. Hence, for any point $x \in S^6$, there is a $g \in G_2$ such that $x = g(e)$, and we have $J_x = g \circ J_e \circ g^{-1}$. We see that $(S^6, J, <, >)$ is a homogeneous almost
Hermitian manifold. We denote by D the Levi-Civita connection of S^6. Then we have
\[(DX)Y = -X \times Y + c < X \times Y, x > x,\]
for $X, Y \in T_x S^6, x \in S^6$. Thus we see that the almost Hermitian structure (J, \langle, \rangle) on S^6 is a nearly Kähler structure ($(DX)X = 0$) which is not Kähler one.

Now, we prepare fundamental formula for Riemannian submanifolds of S^6. Let (M, ϕ) be a submanifolds of S^6 with the isometric immersion $\phi : M \to S^6$. We set $x = \iota \circ \phi$ and consider x as the corresponding position vector to the image of ϕ in $\mathbf{Im} \mathbf{\xi}$, where ι denote the inclusion map from S^6 to $\mathbf{Im} \mathbf{\xi}$. We denote by ∇ and ∇^\perp the Riemannian connections on M and the normal bundle $T^\perp M$ induced by the Riemannian connection D on S^6, respectively. Then, the Gauss and Weingarten formulas are given respectively by
\[
\begin{align*}
D_XY &= \nabla_X Y + \sigma(X, Y), \\
D_X\xi &= -A_\xi X + \nabla^\perp_X \xi,
\end{align*}
\]
where σ and A_ξ are the second fundamental form and the shape operator (with respect to the normal vector field ξ) respectively, and $X, Y \in \mathbf{\xi}(M)$ where $\mathbf{\xi}(M)$ denotes the Lie algebra of all smooth tangent vector fields on M. The second fundamental form σ and the shape operator A_ξ are related by
\[
\langle \sigma(X, Y), \xi \rangle = \langle A_\xi X, Y \rangle.
\]
The Gauss, Codazzi and Ricci equations are given respectively by
\[
\begin{align*}
\langle R(X, Y)Z, W \rangle &= \langle X, W \rangle < Y, Z > - \langle X, Z \rangle < Y, W > + \langle \sigma(X, W), \sigma(Y, Z) > - \langle \sigma(X, Z), \sigma(Y, W) > \\
(\nabla^\perp_X \sigma)(Y, Z) &= (\nabla^\perp_Y \sigma)(X, Z), \\
\langle R^\perp(X, Y)\xi, \eta \rangle &= \langle [A_\xi, A_\eta] X, Y \rangle,
\end{align*}
\]
where $(\nabla^\perp_X \sigma)(Y, Z) = \nabla^\perp_X \sigma(Y, Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z)$, and $R^\perp(X, Y)\xi = [\nabla^\perp_X, \nabla^\perp_Y] \xi - \nabla^\perp_{[X, Y]} \xi$ for $X, Y, Z, W \in \mathbf{\xi}(M)$ and ξ, η are vector fields normal to M.

We herewith recall the definitions of almost complex submanifolds, totally real submanifolds and CR-submanifolds of a nearly Kähler S^6. A submanifold (M, x) of S^6 is called an almost complex submanifolds (or invariant submanifolds) of S^6 if the tangent bundle TM of M is stable under the action of J, that is, $x_* (J(TM)) = x_*(TM)$. It is well-known that there does not exist a 4-dimensional almost complex submanifold of S^6 ([13]). However, it is also known there are many examples of 2-dimensional almost complex submanifolds of S^6. We shall call a 2-dimensional almost complex submanifold a J-holomorphic curve in the present article. A submanifold (M, x) is called a totally real submanifold of S^6 if the image of J of the tangent bundle TM of M is contained in the normal bundle $T^\perp M$, that is, $x_*(J(TM)) \subset T^\perp M$. In this case, we easily see that dim $M \leq 3$. Further, a submanifold (M, x) is called a CR-submanifold of S^6 if the tangent bundle TM
of M admits a splitting $TM = H \oplus H^\perp$ such that H is J-invariant and H^\perp is totally real, that is $x_*(H^\perp) \subset T^\perp M$. If H and H^\perp are both non-trival, the CR-submanifold (M, x) is said to be proper. In this article, we consider only proper ones as CR-submanifolds of S^6.

2.1. Structure equation of G_2

We recall the structure equation of G_2 obtained by Bryant ([5]). We denote by $M_{p \times q}(\mathbb{C})$ the set of $p \times q$ complex matrices and $[a] \in M_{3 \times 3}(\mathbb{C})$ is given by (this matrix corresponds to the usual exterior product of \mathbb{R}^3)

$$[a] = \begin{pmatrix} 0 & a_3 & -a_2 \\ -a_3 & 0 & a_1 \\ a_2 & -a_1 & 0 \end{pmatrix},$$

where $a = (a_1, a_2, a_3) \in M_{3 \times 1}(\mathbb{C})$. Then we have

$$[a]b + [b]a = 0$$

where $a, b \in M_{3 \times 1}(\mathbb{C})$. Now, we set a basis of $\mathbb{C} \otimes_R \text{Im}\mathbb{C}$ with respect to J_ε.

$$\varepsilon = (0, 1) \in H \oplus H,$$

$$E_1 = iN, \quad E_2 = jN, \quad E_3 = kN,$$

where $N = (1 - \sqrt{-1})/2, \quad \overline{N} = (1 + \sqrt{-1})/2 \in \mathbb{C} \otimes R \mathbb{C}$. The basis (u, f, \overline{f}) of $\mathbb{C} \otimes_R \text{Im}\mathbb{C}$ is called a G_2-admissible frame if there is $g \in G_2 \subset M_{7 \times 7}(\mathbb{C})$ such that

$$(u, f, \overline{f}) = (g(\varepsilon), g(E), g(\overline{E})) = (\varepsilon, \quad E, \quad \overline{E}) g.$$

We may identify a G_2-admissible frame with an element of G_2. Then the structure equations of G_2 are given by the following:

Proposition 2.1. ([5]) There exit left invariant 1-forms κ and θ on G_2. Then

$$d(\ u, \ f, \ \overline{f}) = (\ u, \ f, \ \overline{f}) \begin{pmatrix} 0 & -\sqrt{-1} i \theta & \sqrt{-1} i \overline{\theta} \\ -2\sqrt{-1} \theta & \kappa & [\overline{\theta}] \\ 2\sqrt{-1} \overline{\theta} & [\theta] & \pi \end{pmatrix}$$

$$= (\ u, \ f, \ \overline{f}) \Phi,$$

where $\theta = (\theta^i)$ is a $M_{3 \times 1}(\mathbb{C})$-valued 1-form, $\kappa = (\kappa^i_j)$, $1 \leq i, j \leq 3$, is a $\mathfrak{su}(3)$-valued 1-form. We denote by Φ a Maurer-Cartan form of G_2. Therefore Φ satisfy the integrability condition $d\Phi = -\Phi \wedge \Phi$. Or equivalently, we have

$$d\theta = -\kappa \wedge \theta + [\overline{\theta}] \wedge \overline{\theta}.$$
\[d\kappa = -\kappa \wedge \kappa + 3\theta \wedge \bar{\theta} - (\theta \wedge \bar{\theta}) I_3.\]

We can easily see that \(\kappa\) defines the \(SU(3)\)-connection on \(S^6\). Also, \(d\kappa + \kappa \wedge \kappa\) generates the Lie algebra of \(SU(3)\)-holonomy group.

3. J-holomorphic curves

3.1. Fundamental properties

Let \(M\) be an oriented real 2-dimensional surface and \(\phi : M \to S^6\) be a \(J\)-holomorphic curve of \(S^6\). Then, we have the following property with respect to the isothermal coordinate \(z\) which compatible with the oietation,

\[J\phi_* \left(\frac{\partial}{\partial z} \right) = \sqrt{-1} \phi_* \left(\frac{\partial}{\partial z} \right)\]

Proposition 3.1. Let \(\phi : M \to S^6\) be a \(J\)-holomorphic curve of \(S^6\). Then we have

1. \[\sigma(JX,Y) = \sigma(X,JY) = J\sigma(X,Y).\]
 In particular, any \(J\)-holomorphic curve is a minimal submanifold of \(S^6\).

2. \[A_{J\xi}(X) = J(A_\xi X).\]

3. \[\nabla^\perp_X (J\xi) = J(\nabla^\perp_X \xi) + \xi \times X.\]

where \(\sigma\) is the second fundamental form of \(x\), \(A_\xi\) is a shape operator with respect to the normal vector \(\xi\) and \(\nabla^\perp\) is an induced connection of the normal bundle, respectively, and \(X, Y\) are vector fields on \(M\).

3.2. \(G_2\)-frame fields

In this section, we introduce the \(G_2\)-frame field along the \(J\)-holomorphic curve of \(S^6\), and give the structure equations with respect to the \(G_2\) frame field. First we note that \(G_2\) can be regarded as the total space of the principal \(SU(3)\)-right bundle over \(S^6\). We assume there exists the small open subset \(U \subset M\) such that any point of \(U\) is not geodesic one. Then we shall construct the \(SU(3)\)-frame field on \(U\) as follows. Let \(\{e_1, J e_1\}\) be a local tangential orthonormal frame field on \(U\), \(\{\xi_1, J\xi_1\}\) and \(\{e_1 \times \xi_1, J(e_1 \times \xi_1)\}\) the local orthonormal frame field of the 1-st normal
bundle and the 2-nd normal bundle, respectively. We take the complexification of
these frame fields, we define the $SU(3)$ frame field (f, \overline{f}) on $x(U) \subset S^6$ in $\mathbb{C} \otimes \mathbb{R} \text{Im} \mathbb{C}$

$$
\begin{align*}
\begin{array}{c}
f_3 &= (1/2)(e_1 - \sqrt{-1}Je_1), \\
f_2 &= (1/2)(\xi_1 - \sqrt{-1}J\xi_1), \\
f_1 &= (1/2)(e_1 \times \xi_1 - \sqrt{-1}J(e_1 \times \xi_1)),
\end{array}
\end{align*}
$$

(3.1)

Then, $(x, f_1, f_2, f_3, \overline{f_1}, \overline{f_2}, \overline{f_3}) = (x, f, \overline{f})$ is the local admissible G_2-frame field on U along the immersion x. Therefore, there exists a $g \in G_2$ such that

$$
\begin{align*}
f_3 &= (1/2)(g(-k) - \sqrt{-1}g(-k\varepsilon)) = g(E_3), \\
f_2 &= (1/2)(g(j) - \sqrt{-1}g(j\varepsilon)) = g(E_2), \\
f_1 &= (1/2)(g(i) - \sqrt{-1}g(i\varepsilon)) = g(E_1).
\end{align*}
$$

Pulling back the G_2-structure equation by the immersion x, we get the corresponding structure equation in the following Proposition along the curve x. The frame field (x, f, \overline{f}) belongs to the sub-bundle of the induced G_2-bundle.

Proposition 3.2. Let $x : M \rightarrow S^6$ be a J-holomorphic curve of the 6-dimensional sphere S^6. Then we have

$$
\begin{align*}
dx &= f_3(-2\sqrt{-1}\theta^3) + \overline{f_3}(2\sqrt{-1}\ \overline{\theta^3}), \\
\theta^2 &= \theta^1 = 0, \ \kappa_3^1 = 0, \\
\frac{df_3}{dx} &= x(-\sqrt{-1}\ \overline{\theta^3}) + \sum_{i=1}^{3} f_i \cdot \kappa_3^i \quad (\text{Gauss formula}), \\
\frac{df_2}{dx} &= \sum_{i=1}^{3} f_i \cdot \kappa_1^i - \overline{f_3} \theta^3, \\
\frac{df_1}{dx} &= \sum_{i=1}^{3} f_i \cdot \kappa_1^i - \overline{f_3} \theta^3, \quad (\text{Weingarten formula}).
\end{align*}
$$

Since the isotropy group is $SU(3)$, we get

$$
\kappa_3^3 + \kappa_2^2 + \kappa_1^1 = 0,
$$

The integrability conditions imply that

$$
\begin{align*}
d\theta^3 &= \kappa_3^3 \land \theta^3 = 0, \\
d\kappa_3^3 &= \kappa_3^3 \land \kappa_3^2 = 2\theta^3 \land \overline{\theta^3}, \\
d\kappa_2^2 &= \kappa_2^2 \land \kappa_3^3 + \kappa_1^2 \land \kappa_2^1 = -\theta^3 \land \overline{\theta^3}, \\
d\kappa_1^1 &= \kappa_1^1 \land \kappa_2^1 = -\theta^3 \land \overline{\theta^3}, \\
d\kappa_3^2 &= (\kappa_2^2 - \kappa_3^3) \land \kappa_3^2 = 0, \\
d\kappa_2^1 &= (\kappa_1^1 - \kappa_2^2) \land \kappa_2^1 = 0.
\end{align*}
$$
We note that κ_3, κ_2 are local 1-form of type $(1,0)$ with respect to the induced complex structure (from the induced metric) of M.

Remark 3.1. The immersion x is not totally geodesic, we see that the geodesic points are isolated (if exist) (refer to the argument in §3.4). In this case the $SU(3)$-frame field given in (3.1) can be extended to a neighborhood containing the geodesic point by making use of $SU(3)$-connection.

3.3. Examples of constant Gauss curvature

The second author ([32]) proved that if M is a J-holomorphic curve of constant curvature K in S^6, then $K = 1, 1/6$ or 0. We may see that such surfaces are congruent up to the action of $SO(7)$ to the following three examples.

1. Totally geodesic J-holomorphic sphere.

 $$ \iota : V \cap S^6 \to S^6 $$

 where V is an associative plane and ι is an inclusion map.

2. Boruvka sphere:

 $$ \varphi : S^2(1/6) \to S^6 $$

 where φ is defined by

 $$ \varphi(y_1, y_2, y_3) = \left\{ \begin{array}{l}
 (1/24\sqrt{6}) \{ i (-\sqrt{10})y_2(y_2^2 - 3y_3^2) \\
 + j (-2\sqrt{15})y_1(y_2^2 - y_3^2) \\
 + k (\sqrt{6})y_3(y_3^2 - y_2^2) \\
 + e 2y_1(3y_2^2 + 3y_3^2 - 2y_3) \\
 + ie (\sqrt{10})y_3(3y_2^2 - y_3) \\
 + j e (4\sqrt{15})(y_1y_2y_3) \\
 + k e (\sqrt{6})y_2(y_2^2 + y_3^2 - 4y_3^2) \}
 \end{array} \right. $$

 where $y_1^2 + y_2^2 + y_3^2 = 6$, and its Gauss curvature is identically $1/6$. The mapping φ is an imbedding.

3. Flat torus:

 $$ f : T^2 \to S^6 $$

 where f is defined by

 $$ f(z, \overline{z}) = \left\{ \begin{array}{l}
 (1/\sqrt{3})\{ E_1 e^{z} + \overline{E_1} e^{-z} \\
 + E_2 e^{z-\overline{z}} + \overline{E_2} e^{-z-\overline{z}} \\
 + E_3 e^{z-\overline{z}} + \overline{E_3} e^{-z-\overline{z}} \}
 \end{array} \right. $$

 $$ = \left\{ \begin{array}{l}
 (1/\sqrt{3})\{ i \cos(2y) + ie \sin(2y) \\
 + j \cos(\sqrt{3}x - y) + je \sin(\sqrt{3}x - y) \\
 - k \cos(\sqrt{3}x + y) + ke \sin(\sqrt{3}x + y) \}
 \end{array} \right. $$
where $\omega = e^{2\pi \sqrt{-1}/3}$ and $z = x + \sqrt{-1}y \in \mathbb{C}$. We may remark that the flat torus is not G_2-congruent in general.

Remark 3.2. R.L. Bryant ([6]) classified the minimal surfaces of constant Gauss curvature of space forms.

3.4. Local existence and the G_2-congruency

First, we introduce the notion of some class of functions on Riemann surface M with holomorphic coordinate z. An non-negative function $f : M \to \mathbb{R}_{\geq 0}$ is called an absolute value type, if for each point of M there exists some neighborhood U and the holomorphic function $\varphi_0(z)$ and non-zero complex valued function $\varphi_1(z, \overline{z})$ such that $f(z, \overline{z}) = |\varphi_0(z)\varphi_1(z, \overline{z})|$ on U.

By Proposition 3.2, we have

Theorem 3.1. ([16]) Let M be a simply connected surface. If its Gauss curvature K is not identically 1, and satisfy $K \leq 1$. We also assume that the functions $\sqrt{1-K}$ and $|\mathbf{III}|$ are of absolute value type, and further following differential equalities

$$\triangle \log(1 - K) = 6K - 1 + 4 |\mathbf{III}|^2,$$

$$\triangle \log |\mathbf{III}| = 1 - 4 |\mathbf{III}|^2,$$

hold outside their zeros. Then there exists a J-holomorphic curves $\varphi : M \to S^6$. where $|\mathbf{III}| = |\kappa_2^1(f_3)|$.

Let $x : M \to S^6$ be a J-holomorphic curve of S^6. We set Λ as

$$\Lambda = 4\sqrt{-1}(\kappa_3^2)^2 \otimes \kappa_2^1 \otimes (\theta^3)^3,$$

then it is a holomorphic 6-differential on M. If we take the local isothermal coordinate z, then we have

$$\Lambda = \sigma_2(\partial_z, \partial_{\overline{z}}, x_*(\partial_z) \times \sigma(\partial_z, \partial_{\overline{z}}) > dz^6,$$

where $\partial_z = \partial/\partial z$, and σ_2 is a third fundamental form. By Theorem 3.1, we can obtain the classification theorems of J-holomorphic curves with constant Gauss curvature (as above in §3.3).

Theorem 3.2. ([16]) Let M be a connected, orientable surface and $x_1, x_2 : M \to S^6$ be two J-holomorphic curves. Then there exists an element $g \in G_2$ such that $g \circ x_1 = x_2$ if and only if the induced metrics and the corresponding holomorphic 6-differentials coincide.
The J-holomorphic curve is said to be super-minimal if the holomorphic 6-differential identically zero.

3.5. Weierstraß-Bryant type formula for super-minimal J-holomorphic curves

Let \(Q^5 \) be the 5-dimensional complex quadric \(Q^5 \subset P^6(\mathbb{C}) \) of the complex projective space, given by the following
\[
Q^5 = \left\{ [w_0 : w_1 : \cdots : w_6] \in P^6(\mathbb{C}) | (w_0)^2 + w_1 w_4 + w_2 w_5 + w_3 w_6 = 0 \right\}
\]
where [] is the homogeneous coordinate of \(P^6(\mathbb{C}) \). Any super-minimal J-holomorphic curves of \(S^5 \) can be obtained as the projection of the integral curve of the (complex) 2-dimensional sub-bundle \(L_+ \) (with respect to the \(SU(3) \)-connection), of the holomorphic tangent bundle \(T^{1,0}Q^5 \) of the quadrics \(Q^5 \). The differential equations which is corresponding to the integral curve, can be rewritten as the ordinary differential equation with respect to the \(G_2(\mathbb{C}) \)-valued function. By solving them, we have the following representation formula.

Theorem 3.3. ([18]) Let \(U \) be a simply connected domain of \(\mathbb{C} \). The map \(\Xi : U \rightarrow Q^5 \subset P^6(\mathbb{C}) \) defined by the following, is an integral curve of \(L_+ \) with initial condition \(\Xi(0) = E_1 \) where \(f(\zeta) \) is a holomorphic function on \(U \).

\[
\Xi(\zeta) = \varepsilon \alpha_1(\zeta) + E_1 \cdot 1 + E_2 \alpha_2(\zeta) + E_3 \alpha_3(\zeta) + \overline{E}_1 \alpha_4(\zeta) + \overline{E}_2 \alpha_5(\zeta) + \overline{E}_3 \zeta
\]

where
\[
\begin{align*}
\alpha_1(\zeta) &= \left(\sqrt{-1}/2\right) \left[\zeta \left(f''(\zeta) + f''(0) \right) - 2 \left(f'(\zeta) - f'(0) \right) \right], \\
\alpha_2(\zeta) &= (1/2) \zeta^2 f''(\zeta) - \zeta \left(2 f'(\zeta) + f'(0) \right) + 3 \left(f(\zeta) - f(0) \right), \\
\alpha_3(\zeta) &= (1/2) f''(\zeta) \left(f'(0) - f'(\zeta) \right) \\
&+ f''(0) \left[(1/2) (\zeta f''(\zeta)) - f'(\zeta) + f'(0) + (1/4) f''(0) \zeta \right] \\
&+ (3/4) \int_0^{\zeta} (f''(z))^2 dz, \\
\alpha_4(\zeta) &= f''(\zeta) \left[-(3/2) f(\zeta) + (1/2) \zeta f'(\zeta) + f'(0) \zeta + (1/4) f''(0) \zeta^2 \right] + (3/2) f(0) \\
&+ f'(\zeta) \left(f'(\zeta) - f''(0) \zeta - 2 f'(0) \right) + (3/2) f''(0) f(\zeta) \\
&- (3/4) \zeta \int_0^{\zeta} (f''(z))^2 dz \\
&- (1/2) f'(0) f''(0) \zeta - (3/2) f(0) f''(0) + (f'(0))^2, \\
\alpha_5(\zeta) &= (1/2) (f''(\zeta) - f''(0)).
\end{align*}
\]
As an application, we get the following 1-parameter family of the integral curves $\Xi_t : P^1(C) \to Q^5$ of L_+.

$$
\Xi_t(z) = (\varepsilon, E, \overline{E}) \left(\begin{array}{c}
1 \\
\sqrt{15t} e^{i\theta} z^2 \\
\sqrt{6} t e^{2i\theta} z^5 \\
\sqrt{15t} e^{i\theta} z^3 \\
\sqrt{6} z
\end{array} \right),
$$

for $z \in \mathbb{C}$. Since the projection from S^6 to Q^5 is given by

$$
x_t(z) = \frac{1}{2} \Xi_t(z) \times \overline{\Xi_t(z)} = (1/2)(1 - 6p - 15tp^2 + 15tp^4 + 6t^2p^5 - t^2p^6)
$$

$\Xi_t(z)$ is given by

$$
\langle \Xi_t(z), \overline{\Xi_t(z)} \rangle = (1/2)(1 + 6p + 15tp^2 + 20tp^3 + 15tp^4 + 6t^2p^5 + t^2p^6) \geq 1/2.
$$

From this formula, we can calculate the Gauss curvature of the above super-minimal J-holomorphic curves of S^6, and by Theorem 3.2, we get the following.

Theorem 3.4. ([18]) The 1-parameter family of the above super-minimal J-holomorphic curves of S^6, $x_t : P^1(C) \to S^6$ ($0 \leq t \leq 1$) gives a (non-trivial) deformation which are not G_2-congruent. In particular, if $t = 1$, then it is a Boruvka sphere, and if $t = 0$ then it is totally geodesic.

3.6. The cohomogeneity one J-holomorphic curves of S^5

In [23], they discussed the construction and the classification of compact J-holomorphic curves of class III, which are homeomorphic to torus. In this section,
we shall write the system of ordinary differential equations of a J-holomorphic curves of class III with S^1-symmetry.

First, we consider the map $\phi : \mathbb{R}^2 \to S^5$ defined by

$$\phi(x, y) = (E, E) \left(\begin{array}{c} e^{\sqrt{-1} \alpha_1 y} p_1(x) \\ e^{\sqrt{-1} \alpha_2 y} p_2(x) \\ e^{\sqrt{-1} \alpha_3 y} p_3(x) \\ e^{-\sqrt{-1} \alpha_1 y} p_1(x) \\ e^{-\sqrt{-1} \alpha_2 y} p_2(x) \\ e^{-\sqrt{-1} \alpha_3 y} p_3(x) \end{array} \right) = \left(\begin{array}{c} e^{\sqrt{-1} \alpha_1 y} p_1(x) \\ e^{-\sqrt{-1} \alpha_1 y} p_1(x) \end{array} \right),$$

where $\alpha_i \in \mathbb{R}, \alpha_1 + \alpha_2 + \alpha_3 = 0$ and $\alpha_1 \alpha_2 \alpha_3 \neq 0$ and $p_i(x)$ $(i = 1, 2, 3)$ are some complex-valued smooth functions of $x \in \mathbb{R}$ with $\sum_{i=1}^3 |p_i(x)|^2 = 1$. We may easily observe that ϕ is an immersion and the image $\phi(\mathbb{R}^2) \subset S^5$ (totally geodesic in S^5), if the conditions (3.6) \sim (3.8) (see below) are satisfied. The tangent space of the submanifold (\mathbb{R}^2, ϕ) is spanned by

$$\phi_*(\partial/\partial x) = (E, E) \left(\begin{array}{c} e^{\sqrt{-1} \alpha_1 y} p'_1(x) \\ e^{-\sqrt{-1} \alpha_1 y} p'_1(x) \end{array} \right),$$

$$\phi_*(\partial/\partial y) = (E, E) \left(\begin{array}{c} \sqrt{-1} \alpha_1 e^{\sqrt{-1} \alpha_1 y} p'_1(x) \\ -\sqrt{-1} \alpha_1 e^{-\sqrt{-1} \alpha_1 y} p'_1(x) \end{array} \right)$$

Therefore we have

$$J\phi_*(\partial/\partial x) = (\phi_*(\partial/\partial x)) \times \phi(x, y)$$

is given by the following

$$J\phi_*(\partial/\partial x) = \sqrt{-1} \xi/2 \sum_{i=1}^3 (p'_i p_i - p_i p'_i) + E_1 e^{\sqrt{-1} \alpha_1 y} (-p'_2(x)p_3(x) + p_2(x)p'_3(x)) + E_2 e^{\sqrt{-1} \alpha_2 y} (-p'_3(x)p_1(x) + p_3(x)p'_1(x)) + E_3 e^{\sqrt{-1} \alpha_3 y} (-p'_1(x)p_2(x) + p_1(x)p'_2(x))$$

From the above relations, the map (\mathbb{R}^2, ϕ) is J-holomorphic curve of S^5 if and only if

$$\sum_{i=1}^3 (p'_i p_i - p_i p'_i) = 0$$
Submanifolds of a nearly Kähler 6-dimensional sphere

\[
\begin{pmatrix}
0 & -p_3 & p_2 \\
-p_3 & 0 & -p_1 \\
-p_2 & p_1 & 0
\end{pmatrix}
\begin{pmatrix}
p_1' \\
p_2' \\
p_3'
\end{pmatrix}
= -\sqrt{-1}
\begin{pmatrix}
\alpha_1 p_1 \\
\alpha_2 p_2 \\
\alpha_3 p_3
\end{pmatrix}
\]

\[
\sum_{i=1}^{3} |p_i'(x)|^2 = \sum_{i=1}^{3} \alpha_i^2 |p_i(x)|^2
\]

The equations (3.7) reduce to the following form:

\[
p_1' = \sqrt{-1}(\alpha_3 - \alpha_2)p_3 p_2
\]
\[
p_2' = \sqrt{-1}(\alpha_1 - \alpha_3)p_1 p_3
\]
\[
p_3' = \sqrt{-1}(\alpha_2 - \alpha_1)p_2 p_1.
\]

The equations (3.9) imply the condition (3.6) automatically. Since \(\sum_{i=1}^{3} |p_i(x)|^2 = 1\), (3.8) and (3.9), we have also

\[
\sum_{i=1}^{3} \alpha_i |p_i(x)|^2 = 0,
\]

Here, in particular if we assume that \(p_1(x), p_3(x)\) are real valued smooth functions and \(p_2(x) = \sqrt{-1}q_2(x)\), for a certain real valued smooth function \(q_2(x)\), then the equations (3.9), reduce to the Euler type equations.

\[
p_1' = (\alpha_3 - \alpha_2)p_3 q_2
\]
\[
q_2' = (\alpha_1 - \alpha_3)p_1 p_3
\]
\[
p_3' = (\alpha_2 - \alpha_1)q_2 p_1.
\]

Therefore, by the well known fact about the Euler type equations, and hence the solution of (3.11) can be represented by using elliptic integrals, and hence there exist many required examples.

4. 3-dimensional submanifolds

4.1. Orbits

In this section, we give the examples of 3-dimensional totally real and CR-submanifolds of \(S^6\) which are obtained as the orbits of the subgroup \(Sp(1) \cong SU(2)\) of \(G_2\). It was known that there exist 4-types of representations from \(SU(2)\) to \(G_2\) by Mal’cev([26]). We call these four types of the representations types I \sim IV, respectively. Mashimo([27]) proved that there exist 3-dimensional totally real (Lagrangian submanifold) corresponding to the types I \sim IV, respectively. In particular, type IV
is a irreducible representation from $SU(2)$ to G_2. The orbit of $SU(2)$ gives the realiza-
tion of the 3-dimensional totally real submanifold $f : S^3(1/16) \to S^6$ which is obtained by Ejiri([10]). We note that any 3-dimensional totally real submanifold of S^6 is a minimal submanifold.

We here recall the actions of $SU(2)(\subset G_2)$ on $\Im \mathfrak{C}$ corresponding to the types $I \sim IV$, respectively. Action of type I

$$\rho_1(q)(a + be) = a + (qb)e.$$

Action of type III

$$\rho_{III}(q)(a + be) = qa\eta + (qb\eta)e.$$

Action of type IV: The Lie algebra of $SU(2)$ is spanned by the following basis (of (2.1)). We denote by U_4 the Lie subgroup of G_2 corresponding to the type IV.

$$\begin{cases} X_1 = 4G_{32} + 2G_{54} + 6G_{76}, \\ X_2 = \sqrt{6}(G_{37} + G_{26} - 2G_{15}) + \sqrt{10}(G_{42} - G_{35}), \\ X_3 = \sqrt{6}(G_{63} + G_{27} - 2G_{41}) + \sqrt{10}(G_{25} - G_{34}). \end{cases}$$

Then U_4 is isomorphic to $SO(3)$.

We shall consider the action of type II which includes some nice examples. We define the the action of type II ($Sp(1)$ acts on $\Im \mathfrak{C}$) as follows;

$$\rho_{II}(q)(a + be) = qa\eta + (qb\eta)e$$

where $q \in S^3 \subset \mathbf{H}$, $S^3 \cong Sp(1)$. Then we can easily see that $\{\rho_{II}(q)|q \in S^3\}$ is a Lie subgroup of G_2. In fact, we see that

$$\rho_{II}(q)(a + be)\rho_{II}(q)(c + de) = \rho_{II}(q)(ac - \overline{db} + (da + \overline{bc})e).$$

Next, we consider the orbit of $Sp(1)$ through the point $\sqrt{1 - r^2} + re \in S^6$ given by

$$\psi_r(q) = \sqrt{1 - r^2}q\bar{q} + r\bar{q}.$$

Then we see that the map ψ_r is an imbedding for for each r ($0 \leq r \leq 1$). To obtain the 3-dimensional totally real or CR-submanifolds, the tangent space at $\psi_r(q)$ is spanned by $\{\psi_r(q_1), \psi_r(q_2), \psi_r(q_3), \psi_r(q_4)\} = -2\sqrt{1 - r^2}q\bar{k} - r(\bar{q}k)e$, $\{\psi_r(q_5), \psi_r(q_6), \psi_r(q_7), \psi_r(q_8)\} = 2\sqrt{1 - r^2}q\bar{q} - r(\bar{k}q)e$, where $\{q_i, q_j, q_k\}$ is a left invariant vector field of S^3. Then the induced metric is given by

$$<\psi_r(q_1), \psi_r(q_2)> = r^2,$$

$$<\psi_r(q_3), \psi_r(q_4)> = -2\sqrt{1 - r^2}q\bar{k} - r(\bar{q}k)e,$$

the other elements are zero. In order to the Kähler angle θ of the tangent space, we check the action of the almost complex structure on the tangent space;

$$J((\psi_r(q_1))) = -(r\bar{q}k)e\left(\sqrt{1 - r^2}q\bar{q} + r\bar{q}e\right).$$
Submanifolds of a nearly Kähler 6-dimensional sphere

\[r \left(r q \bar{q} - \sqrt{1 - r^2} \bar{q} \varepsilon \right), \]

\[J \left((\psi_r)_*(qj) \right) = (3r^2 - 2)qj - 3r \sqrt{1 - r^2} (kq) \varepsilon, \]

\[J \left((\psi_r)_*(qk) \right) = (3r^2 - 2)qk + 3r \sqrt{1 - r^2} (j\bar{q}) \varepsilon. \]

Since the vector field \(J \left((\psi_r)_*(qi) \right) \) is normal to \(\psi_r(M) \), the Kähler angle \(\theta \) is given by

\[\cos \theta = \left| \frac{\langle (\psi_r)_*(qj), J \left((\psi_r)_*(qk) \right) \rangle}{\left| (\psi_r)_*(qj) \right| \left| (\psi_r)_*(qk) \right|} \right| = \frac{\sqrt{1 - r^2} (9r^2 - 4)}{4 - 3r^2}. \]

By homogeneity, the Kähler angle of the orbit is constant. Also, we obtain

Proposition 4.1. (0) If \(r = 0 \), then the orbit is a totally geodesic \(J \)-holomorphic curve.

(1) If \(r = 2/3 \), then the orbit is a 3-dimensional totally real submanifold (which is not totally geodesic).

(2) If \(r = 2\sqrt{2}/3 \), then the orbit is a 3-dimensional CR-submanifold.

(3) If \(r = 1 \), then the orbit is a 3-dimensional totally geodesic, totally real submanifold.

We may note that the \(J \)-invariant 2-dimensional distribution of the above 3-dimensional CR-submanifold is not involutive.

4.2. Tubes

In this section, we shall give the construction of 3-dimensional \(\Sigma_J \) submanifolds from the image of the exponential map of some unit sphere bundle over \(J \)-holomorphic curves, we shall call such image "tube." It is well known that the exponential map at \(x \in S^6 \), \(\exp_x : T_x(S^6) \to S^6 \) with respect to the canonical metric is given by \(\exp_x(tX) = \cos t \cdot x + \sin t \cdot X \). From the arguments in §3.2, we may observe that, if a \(J \)-holomorphic curve is not totally geodesic, the normal bundle can be represented by the direct sum of the 1st and the 2nd normal bundles. By this splitting, we may define the tubes of corresponding normal bundles as follows.

\[\varphi^1_t(m, u) = \cos t \cdot \varphi(m) + \sin t \cdot \sigma(u, u)/\lambda, \]

\[\varphi^2_t(m, u) = \cos t \cdot \varphi(m) + \sin t \cdot \varphi_*(u) \times \sigma(u, u)/\lambda, \]
where \(\varphi : M \to S^6 \) is a J-holomorphic curve without geodesic point, \((m, u)\) is an element of the unit tangent bundle of \(M \). Also we note that \(\lambda = |\sigma(u, u)| \) is depend only on the point \(m \in M \). Then we have

Proposition 4.2. ([8, 21]) The tubes of second normal bundles imply the following.

1. If \(\cos t = 0 \), then it is the given J-holomorphic curve.
2. If \(\cos t = 2/3 \), then it is a 3-dimensional totally real submanifold.
3. If \(\cos t = 2\sqrt{2}/3 \), then it is a 3-dimensional CR-submanifold.
4. If \(\cos t = 1 \), then it is a 3-dimensional totally real submanifold.

We can obtain the examples of submanifold with constant Kähler angle as the tubes of the 1st normal bundle, but it is more complicated ([21]). By Theorem 3.4 and Proposition 4.2, we can easily see that there exists a (non-trivial) deformation of 3-dimensional totally real or CR-submanifolds. We remark that the values of Propositions 4.1, 4.2 coincide. However we can not understand the reason up to now.

4.3. Flows

We introduce the another construction of the J-holomorphic curves and 3-dimensional submanifolds. A 3-dimensional CR-submanifold is called **involutive type** if the 2-dimensional J-invariant distribution is involutive. Such a 3-dimensional CR-submanifold was obtained by the second author ([33]). The immersion

\[
\varphi : S^1 \times S^2 \to S^5 \subset S^6
\]

is given by

\[
\varphi(t, p) = \exp(tX)(p)
\]

where \(X = aG_{51} + bG_{62} + cG_{73} \) (\(a + b + c = 0 \), \(abc \neq 0 \)) and \(p \in S^2 \) and \(\exp \) is an exponential map of the matrix. The induced metric of this example is warped product, and its cohomogeneity is 1 (not homogeneous with respect to the induced metric). These examples are extended by ([20]). In ([23]), we classify any J-holomorphic curves from 2-dimensional torus to \(S^5 \) (which is a totally geodesic sphere of \(S^6 \)) by using the integrable systems. Explicit examples of such curves is given by

\[
\varphi(t, s) = \exp(tX)(\gamma(s))
\]

where \(\gamma(s) \) is some curve of \(S^2 \) which is represented by the elliptic functions. In particular, if the curve \(\gamma(s) \) is a geodesic in \(S^2 \), then the immersion coincide with flat torus. From these construction, if we take the irrational flow, we get the non-compact examples.
Submanifolds of a nearly Kähler 6-dimensional sphere

Concerning 4-dimensional CR-submanifolds of \(S^6 \), it is only known that there does not exist a 4-dimensional CR-product submanifold of \(S^6 \) ([33]).

5. 4-dimensional CR-submanifolds

Concerning 4-dimensional CR-submanifolds of \(S^6 \), it is only known that there does not exist a 4-dimensional CR-product submanifold of \(S^6 \) ([33]).

5.1. Fundamental properties

First, we recall the following characterization for a 4-dimensional oriented submanifold of \(S^6 \) to be a CR-submanifold. ([8, 21])

Proposition 5.1. \((5.1)\) Let \(\varphi : M^4 \to S^6 \) be an orientable 4-dimensional submanifold of \(S^6 \). Then \((M^4, \varphi) \) is a CR-submanifold of \(S^6 \) if and only if it satisfies one of the following conditions

1. \(\omega(T^\bot M^4) = 0 \),
2. \(*\omega(TM^4) = 0 \),

where \(\omega \) denote the Kähler form of \(S^6 \).

Remark 5.1. Let \(\varphi : M^4 \to S^6 \) be a 4-dimensional CR-submanifold. If \(g \in G_2 \), then \(g \circ \varphi \) is also. However, if \(h \in SO(7) \setminus G_2 \), then \(h \circ \varphi \) is not a CR-submanifold, in general.

Let \(\varphi : M^4 \to S^6 \) be a 4-dimensional CR-submanifolds of \(S^6 \) and discuss some fundamental properties concerning \((M^4, \varphi) \). Especially we discuss a (local) orthonormal CR-adapted frame field along \((M^4, \varphi) \). Let \(\xi_1, \xi_2 \) be a local orthonormal frame fields \(\xi_1, \xi_2 \) of \(H^\bot \). Then we have \(\text{span}_R \{ J\xi_1, J\xi_2 \} = T^\bot M^4 \). Then the exterior product \(\xi_1 \times \xi_2 \) depends only on the given orientation of \(H^\bot \) and is independent on the choice of the orthonormal frame fields. Also we have \(\xi_1 \times \xi_2, J(\xi_1 \times \xi_2) \in H \). Therefore, the vector field \(\xi_1 \times \xi_2 \) is well defined whole on \(M^4 \). Hence \(H \) has an absolute parallelisability. We see that \(\{ \xi_1 \times \xi_2, J(\xi_1 \times \xi_2), \xi_1, \xi_2 \} \) is a local orthonormal frame field of \(M^4 \). We obtain

Proposition 5.2. \((5.2)\) Let \(\varphi : M^4 \to S^6 \) be an orientable compact 4-dimensional CR-submanifold of \(S^6 \), then the Euler number of \(M^4 \) vanishes.

By Proposition 5.2, we may immediately see that 4-dimensional sphere, product of two 2-dimensional spheres and complex 2-dimensional projective space can not be realized as a CR-submanifold of \(S^6 \). On the other hand, since \(\dim H^\bot = 2 \), and
H^\perp is orientable, we can define two kinds of almost complex structures J_1, J_2 on M^4 such that

$$J_1 = J_H \oplus J', J_2 = J_H \oplus (-J')$$

where J_H is the restriction of the almost complex structure of S^6 to the holomorphic distribution H. Hence we have the following decomposition

$$TS^6|_{\varphi(M^4)} = H \oplus H^\perp \oplus T^\perp M^4.$$

If we set $V = H^\perp \oplus T^\perp M^4$, then V is a C^2-vector bundle over M^4. Concerning the characteristic classes of these vector bundles, we have the following

Proposition 5.3.

1. $e(H) = c_1(H^{(1,0)}) = 0$,
2. $p_1(TM^4) = \{c_1(H^{-(1,0)})\}^2 = -\{c_1(T^{(1,0)}M^4)\}^2$,
3. $p_1(V) = 0$,
4. $c_1(V^{(1,0)}) = 0$,

in $H^*(M, \mathbb{Z})$, where $p_1(\ast)$ (resp. $c_1(\ast)$) is a the first Pontrjagin (resp. Chern) class of the corresponding vector bundle, and $e(\ast)$ is the Euler class.

Corollary 5.1. If the holomorphic distribution H is involutive then each compact leaf of H is homeomorphic to 2-dimensional torus.

Further, we have

Theorem 5.1. Let $\varphi : M^4 \rightarrow S^6$ be a 4-dimensional CR-submanifold of S^6. The first Pontrjagin class of the tangent bundle vanishes i.e., $p_1(TM^4) = 0$.

By taking account of the G_2-structure equations on S^6, we can also show that 2-dimensional totally real distribution H^\perp is not integrable.

5.2. Examples

The above arguments in §5.1 assert that there exist many obstructions for the existence of 4-dimensional CR-submanifolds of S^6. However, contrary to this circumstances, we may construct several examples of such submanifolds. We herewith introduce two typical examples of 4-dimensional CR-submanifolds of S^6.

Example 1. Let $\gamma : I \rightarrow S^2 \subset \text{Im} \mathbb{H}$ be any curve in the 2-dimensional sphere $S^2 \subset \text{Im} \mathbb{H} \cong \mathbb{R}^3$, and $(q \in) S^3 \subset \mathbb{H}$ be the 3-dimensional sphere of the quaternions \mathbb{H}. Then the product immersion $\psi : I \times S^3 \rightarrow S^6$, which is defined by

$$\psi(t, q) = a\gamma(t) + b\overline{q}$$
gives a 4-dimensional submanifold of S^6, for any $a, b > 0$ with $a^2 + b^2 = 1$. Here, t denotes the arc length parameter of γ.

In fact, let $(I \times S^3, \psi)$ be the submanifold of S^6 gives in the above example 1. Then, we may choose the orthonormal frame field $\{\nu_1, \nu_2\}$ of the normal bundle in such a way that

$$\nu_1 = \dot{\gamma}(t) \times \gamma(t), \nu_2 = b\gamma(t) - a\bar{\eta}\varepsilon.$$

Thus we have

$$J(\nu_2) = (b\gamma(t) - a\bar{\eta}\varepsilon) \times (a\gamma(t) + b\bar{\eta}\varepsilon) = \gamma(t) \times \bar{\eta}\varepsilon = (\bar{\eta}\gamma(t))\varepsilon \in H\varepsilon,$$

therefore, $<\nu_1, J(\nu_2)> = 0$. Thus (1) of Proposition 5.1, we get the desired result.

Further, we may obtain the corresponding CR-frame fields along $(I \times S^3, \psi)$ in the following way. A local orthonormal frame field of H^\perp is given by

$$\psi_*(\xi_1) = J(\nu_1) = \nu_1 \times \psi = -a\dot{\gamma}(t) + b(\dot{\gamma}(t) \times \gamma(t)) \cdot \bar{\eta}\varepsilon,$$

$$\psi_*(\xi_2) = J(\nu_2) = \dot{\gamma}(t) \times \bar{\eta}\varepsilon.$$

On the other hand, an orthonormal frame field of H is given by

$$\psi_*(e_1) = J(\nu_1) \times J(\nu_2) = b\dot{\gamma}(t) + a(\dot{\gamma}(t) \times \gamma(t)) \cdot \bar{\eta}\varepsilon, \psi_*(J(e_1)) = (\dot{\gamma}(t)) \cdot \bar{\eta}\varepsilon.$$

Example 2. The following immersion $\phi : S^1 \times S^3 \to S^6$ is a 4-dimensional CR-submanifold of S^6:

$$\phi(\theta, q) = a(qi\bar{\eta}) + b(\tau(\theta)\bar{\eta}) \cdot \varepsilon,$$

for $a, b > 0$ with $a^2 + b^2 = 1$, where $\tau(\theta) = t\{-\sin(\theta) + \cos(\theta)i\} + s\{\cos(\theta)j + \sin(\theta)k\}$ is a great circle of $S^3 \subset H$ for $t, s > 0$ with $t^2 + s^2 = 1$.

Remark 5.2. The parameters $(a, t) \in (0, 1) \times (0, 1)$ in the above Example 2 represent a parameterization for the orbit space consisting of the families of some $U(2)$-orbits through the points of S^6.

In fact, the basis of the tangent space of ϕ is given by

$$\phi_*(\frac{\partial}{\partial q_j}) = b(\tau(\theta)\bar{\eta}) \cdot \varepsilon,$$

$$\phi_*(qi) = -b(\tau(\theta)\bar{\eta}) \cdot \varepsilon,$$

$$\phi_*(qj) = -2a(qk\bar{\eta}) - b(\tau(\theta)j\bar{\eta}) \cdot \varepsilon,$$

$$\phi_*(qk) = 2a(qj\bar{\eta}) - b(\tau(\theta)k\bar{\eta}) \cdot \varepsilon.$$

The following normal vector fields $\{\nu_1, \nu_2\}$ are given by

$$\nu_1 = b(qi\bar{\eta}) - a(\tau(\theta)\bar{\eta}) \cdot \varepsilon,$$

$$\nu_2 = \frac{1}{\sqrt{1 + 3a^2}} \left(b(qj\bar{\eta}) + 2a(\tau(\theta)k\bar{\eta}) \cdot \varepsilon \right).$$
Hideya Hashimoto and Kouei Sekigawa give rise to the orthonormal frame of $T^\perp M_4$. Therefore $J(\nu_1) = \left(\tau(\theta) i\eta \right) \cdot \varepsilon$, and we have $< \nu_1, J(\nu_2) > = 0$. Hence, by (1) of Proposition 5.1 we see that $(S^1 \times S^3, \phi)$ a 4-dimensional CR-submanifold of S^6. We shall state the geometrical properties of the above examples.

We see that the Example 1 include the special one obtained by the orbit of the subgroup of G_2 determined by the following representation τ_I from $U(2)$ to G_2;

$$\tau_I(\theta, q)(u + v\varepsilon) = e^{i\theta}ue^{-i\theta} + (qve^{-i\theta})\varepsilon.$$

We see also that the Example 2 include the special one obtained by the orbit of the subgroup of G_2 determined by the following representation τ_{II} of $U(2)$ of G_2;

$$\tau_{II}(\theta, q)(u + v\varepsilon) = qu + (e^{i\theta}v\varepsilon).$$

Here $e^{i\theta} = \cos \theta + (\sin \theta)i$ and i is the unit element of the quaternion. We note that the above two examples of 4-dimensional CR-submanifolds of S^6 can be considered as the total space of S^1-bundle over $S^1 \times S^2$ and $S^2 \times S^1$, respectively.

Proposition 5.4. Let $\phi: S^1 \times S^3 \to S^6$ be a 4-dimensional CR-submanifold of S^6 in Example 2. Then

1. The map ϕ is not an imbedding. In fact, we have $\phi(\theta + \pi, -q) = \phi(\theta, q)$. The immersion ϕ is full.

2. The immersion $\phi : S^1 \times S^3 \to S^6$ is minimal if and only if $a = \sqrt{(3 + \sqrt{57})/24}$, $t = 1/\sqrt{2}$. For the other (a, t) in example 2, the length of the mean curvature vector field is constant, but the mean curvature vector field is not parallel with respect to the normal connection. In particular, the second fundamental is not parallel for any immersion of this type.

3. The normal curvature of the immersion ϕ is not flat.

4. The Ricci eigenvalues of the induced metric of the immersion ψ_1 are constant, but the metric is not Einstein.

5. If $a = 1/\sqrt{3}$ and $t = 1/\sqrt{2}$, the holomorphic distribution H is integrable.

Remark 5.3. We here describe the CR-frame field on $S^1 \times S^3$ of the immersion ϕ, explicitly;

$$\xi_1 = \frac{1}{b}qi,$$

$$\xi_2 = -\frac{1}{\sqrt{1 + 3a^2}} \left\{ \frac{5 - 9a^2}{4bst} \left(\frac{\partial}{\partial \theta} + (t^2 - s^2)q_i \right) + \frac{3b}{2}q_j \right\}.$$
\[c_1 = \frac{1}{\sqrt{1 + 3a^2}} \left\{ 1 - 9a^2 \left(\frac{\partial}{\partial \theta} + (t^2 - s^2) q_i \right) + \frac{1 - 3a^2}{2a} q_j \right\}, \]
\[Jc_1 = -\frac{1}{\sqrt{1 + 3a^2}} q_k. \]

The image of the CR-frame field by the differential of \(\phi \) is given by

\[\phi_\ast(\xi_1) = -\left(\tau(\theta) \eta \right) \varepsilon (= -J\nu_1), \]
\[\phi_\ast(\xi_2) = \frac{-1}{\sqrt{1 + 3a^2}} \left\{ -3ab \cdot qk\eta + (1 - 3a^2)(\tau(\theta)j\eta)\varepsilon \right\} (= -J\nu_2), \]
\[\phi_\ast(\bar{e}_1) = \frac{1}{\sqrt{1 + 3a^2}} \left\{ (3a^2 - 1) \cdot qk\eta - 3ab(\tau(\theta)j\eta)\varepsilon \right\} (= J\nu_1 \times J\nu_2), \]
\[J\phi_\ast(\bar{e}_1) = \frac{1}{\sqrt{1 + 3a^2}} \left\{ 2a \cdot qj\eta - b(\tau(\theta)k\eta)\varepsilon \right\}. \]

References

