Fibred Riemannian spaces with Sasaki-Einstein metric

BYUNG HAK KIM

Department of Applied Mathematics, Kyung Hee University,
Suwon 446-701, Korea

e-mail: bhkim@khu.ac.kr

(2010 Mathematics Subject Classification : 53C15, 53C25.)

Abstract. In this talk, we consider the fibred Riemannian space with Sasaki-Einstein metric and summarize recent results for such a space. Moreover we investigate the construction of a space with Sasaki-Einstein metric and the relation of Sasaki-Einstein manifold and Calabi-Yau manifold.

1 Introduction

Recently many papers for the study of Sasaki-Einstein manifold were published. It is well known that the Sasaki-Einstein metric is deeply related to the theory of black holes. A Sasakian manifold is a odd-dimensional Riemannian manifold with normal contact structure, and Sasaki-Einstein manifold is a Riemannian manifold that is both Sasakian and Einstein. Sasakian manifold is the odd-dimensional cousin of Kaehler manifold.

Sasaki-Einstein metric on odd-dimensional Riemannian manifold is deeply related to the Kaehler Ricci flat metric, that is Calabi-Yau metric on an even-dimensional Riemannian manifold. More precisely Sasaki-Einstein manifold may be defined as an Einstein manifold whose metric cone is Ricci flat and Kaehler, that is Calabi-Yau manifold. Such manifolds provide interesting examples of the string theory [3,4,8].

The canonical example of a Sasaki-Einstein manifold is the odd-dimensional sphere equipped with its standard Einstein metric. In this case the Kaehler cone is $\mathbb{C}^n - \{0\}$ equipped with its flat metric [12].

In fact any complex surface whose metric is Kaehler-Einstein and of positive scalar curvature admits a unique simply connected circle bundle which is canonically Sasaki-Einstein.

A classification of Riemannian manifolds admitting real Killing spinors on M correspond to the parallel spinors on $C(M) = (R^+ \times M, dr^2 + r^2 g)$ the metric cone on M. In this point of a view, there are many results about Sasaki-Einstein geometry using this cone manifold with the Kaehler structure.

Key words and phrases: Sasaki-Einstein, Fibred Riemannian space.

For the purpose of the construction of Sasaki- Einstein manifold, we use the Riemannian submersion theory.

From this point of a view, we review recent results and developments of fibred Riemannian space and Sasaki-Einstein geometry as well as other results not mentioned above. Moreover, we consider the relation of Sasaki-Einstein manifold and Calabi-Yau manifold.

2 Warped products and fibred Riemannian space

Let \(\{M, B, G, \pi\} \) be a fibred Riemannian space, that is \(M \) an \(m \)-dimensional total space with projectable Riemannian metric \(G \), \((B, g) \) an \(n \)-dimensional base space, and \(\pi : M \to B \) a projection with a maximal rank \(n \). The fibre passing through a point \(q \) in \(M \) is denoted by \(F(q) \) or generally \(F \), which is a \(p \)-dimensional submanifold of \(M \), where \(p = m - n \).

The quantities \(h \) and \(L \) are the components of the second fundamental tensor and normal connection of each fibre respectively. If the horizontal mapping covering curve in \(M \) is an isometry (resp. conformal mapping) of fibres, then it is called a fibred Riemannian space with isometric (resp. conformal) fibres. It is well known that a necessary and sufficient condition for \(M \) to have isometric (resp. conformal) fibres is \(h = 0 \) (resp. \(h = \lambda \hat{g} \), where \(\hat{g} \) is an induced Riemannian metric on each fibre).

The following Theorem is well known.

Theorem 2.1. [6] If the components of \(L \) and \(h \) vanish identically in a fibred Riemannian space, then the fibred space is locally the Riemannian product of the base space and a fibre.

The warped product space is a special case of Riemannian submersion. Besse [2] introduced the relation of warped product space and Riemannian submersion as follows.

Theorem 2.2. [2] Let \(M = B \times_f F \) be the warped products of \((B, g) \) and \((F, \hat{g}) \). Then the projection \(\pi : M \to B \) onto the first factor is a Riemannian submersion.
Moreover the tensorial invariants of \(\pi \) satisfy

\[(2.1) \quad h = \lambda \bar{g}, \quad L = 0 \quad \text{and} \quad N \text{ is basic},\]

where \(N \) is the mean curvature vector along each fibre. In this case \(N \) is \(\pi \)– related to the vector field \(-\frac{1}{2}Df\) on \(B \), where \(Df \) is the gradient of \(f \) for \(g \) on \(B \).

Conversely, the conditions (2.1) characterize locally warped products among Riemannain submersions.

3 Sasaki-Einstein manifold

A compact Riemannian manifold \((M, g)\) is Sasakian if and only if its metric cone

\[(3.1) \quad C(M) = R^+ \times M, \quad G = dr^2 + r^2 g\]

is Kaehler manifold.

It follows that \(M \) has odd-dimension \(2n - 1 \), where \(n \) denotes the complex dimension of the Kaehler cone.

Notice that the Sasakian manifold \((M, g)\) is naturally isometrically embedded into the cone via the inclusion

\[M = \{r = 1\} = \{1\} \times M \subset C(M).\]

The Kaehler structure of \((C(M), G)\), combined with its cone structure, induce the Sasakian structure on \(M = \{1\} \times M \subset C(M) \).

The following theorem is well known.

Theorem 3.1. [12] Let \((M, g)\) be a Sasakian manifold of dimension \(2n - 1 \). Then the following are equivalent

1. \((M, g)\) is Sasaki-Einstein with \(\text{Ric}_g = 2(n - 1)g \)
2. The Kaehler cone \((C(S), G)\) is Ricci flat, \(\text{Ric}_G = 0 \)
3. The transverse Kaehler structure to the Reeb foliation is Kaehler-Einstein

\[\text{Ric}^T = 2ng^T\]

There are another method of the definition of Sasakian manifold. For an odd-dimensional manifold \(M^{2n+1} \), J. Gray [5] defined an almost contact structure as a reduction of the structural group to \(U(n) \times 1 \). In terms of structure tensors we say
M^{2n+1} has an almost contact structure or sometimes (ϕ, ξ, η)-structure if admits a tensor field ϕ of type $(1, 1)$, a vector field ξ and a 1-form η satisfying

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1.$$

It is well known that (3.2) reduces $\phi \xi = 0$ and $\eta \circ \phi = 0$. If a manifold M^{2n+1} with (ϕ, ξ, η)-structure admits a Riemannian metric g such that

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

then we say M^{2n+1} has an almost contact metric structure and g is called a compatible metric [3,6].

An almost contact structure (ϕ, ξ, η) on M is normal if the almost complex structure J on $M \times \mathbb{R}$ given by

$$J(X, f d\tau) = (\phi X - f \xi, \eta(X) d\tau),$$

f being a C^∞-function on $M \times \mathbb{R}$ is integrable.

An almost contact metric manifold (M, g) with (ϕ, ξ, η) is said to be [7,13]

(i) contact if $\Phi = d\eta$

(ii) K-contact if $\Phi = d\eta$ and ξ is a Killing vector

(iii) Sasakian if $\Phi = d\eta$ and (ϕ, ξ, η) is normal,

where $\Phi(X, Y) = g(\phi X, Y)$.

Y. Tashiro and B.H. Kim [13] have studied the fibred almost contact metric space with invariant fibres tangent to the structure vector and deal with various almost contact structure. They considered the fibred Riemannian space M with base space (B, g) with almost complex manifold with almost complex structure J and fibre F with almost contact structure $(\phi, \xi, \eta, \bar{g})$.

If we put

$$\tilde{\phi} = J_b \ ^a E^b \otimes E_a + \bar{\phi}_\beta \ ^\alpha C^\beta \otimes C_\alpha,$$

$$\tilde{\eta} = \bar{\eta}_\alpha C^\alpha,$$

$$\tilde{\xi} = \bar{\xi}_\alpha C_\alpha,$$

$$G = \begin{pmatrix} g & 0 & \bar{g} \\ 0 & 0 & \bar{g} \end{pmatrix},$$

then we can easily see that $(\tilde{\phi}, \tilde{\xi}, \tilde{\eta}, G)$ defines an almost contact metric structure on M where (E_a, C_α) is a local flame, $\{E_a\}$ are in the base space and $\{C_\alpha\}$ are in the fibre.

Conversely, if there is in M an almost contact structure $(\phi, \xi, \eta, \bar{g})$, G and $\tilde{\phi}$ are projectable and $\tilde{\xi}$ is always vertical, then the structure induces an almost Hermitian structure (J, g) in the base space and almost contact metric structure $(\phi, \xi, \eta, \bar{g})$ in each fibre. In this case we have
Theorem 3.2. [7] If a fibred almost contact metric structure is Sasakian, then
the base space is Kaelerian and each fibre is Sasakian. In this case, each fibre is
minimal, and \(L = J \otimes \xi \), where \(J \) is a almost complex structure on the base space
and \(\xi \) is a structure vector of the fibre.

Theorem 3.3. [7] Let \(M \) be fibred Sasakian space with conformal fibres, then \(M \)
is Sasaki-Einstein if and only if \(B \) is Kaeher-Einstein, \(\bar{S} = \lambda \bar{g} - n \bar{\eta} \otimes \bar{\eta} \) and \(K = n(n + 2p + \bar{K})/p \), where \(\bar{S} \) is a Ricci curvature tensor of the fibre and \(\bar{K} \) is a scalar
curvature of the fibre.

In this case, each fibre is a totally geodesic submanifold of the total space and
\(S = (\alpha + 2)g \), where \(\alpha = \bar{K}/n \) and \(\bar{K} \) is a scalar curvature of the total space. Hence
the base space is Ricci flat if \(\bar{K} = -2m \). In this case, \(K = 0 \) and \(\bar{K} = -2p - n \).

Hence if we consider the 5-dimensional fibre Sasaki-Einstein space with conformal
fibres, then we can clarify the geometric structure of the base space and each
fibre in two cases, that is \(n = 4, p = 1 \) and \(n = 2, p = 3 \). In this case we see that

Theorem 3.4. Let \(M \) be a 5-dimensional fibred Sasakian space with conformal
fibre. Then \(M \) is Einstein (that is \(M \) is Sasaki-Einstein) if and only if

1. \(B \) is Kaeher-Einstein
2. \(F \) is \(\eta \)-Einstein
3. \(\bar{K} = K + 2 \).

From Theorems 2.2 and 3.3, we see that

Theorem 3.5. Let \(M = B \times_f F \) be the warped product of \((B, g) \) and \((F, \bar{g}) \). If
we consider \(M \) as a special case of fibred Riemannian space, then \(M \) with Sasakian
structure does not exist.

For the relation of the Sasaki-Einstein manifold and Calabi-Yau manifold, the
following theorems are well known ([3]).

Theorem 3.6. Let \((M, g) \) be a Riemannian manifold. Then the metric \(g \) is Sasaki-
Einstein if and only if the cone metric \(G \) is Calabi-Yau, i.e., \((C(M), G) \) is Kaehler-
Ricci flat.
Theorem 3.7. Any totally geodesic hypersurface of a nearly Kaehler 6-manifold admits a Sasaki-Einstein structure.

References