On some class of hypersurfaces in spheres

GUOXIN WEI
School of Mathematical Sciences, South China Normal University,
Guangzhou 510631, China
e-mail: weigx@scnu.edu.cn

(2010 Mathematics Subject Classification : 53C42, 58E12.)

Abstract. This paper is a survey on our results of the construction of certain families of submanifolds, such as hypersurfaces with constant m^{th} mean curvature, Willmore submanifolds, minimal Lagrangian submanifolds in complex hyperquadrics and so on.

1 Introduction

In this section, we review the construction of rotational hypersurfaces in the unit sphere, then we give some preliminary definitions and introduce some elementary properties of rotational hypersurfaces.

Let M be a rotational hypersurface of $S^{n+1}(1)$, that is, invariant by the orthogonal group $O(n)$ considered as a subgroup of isometries of $S^{n+1}(1)$. Let us parametrize the profile curve α in $S^2(1)$ by $y_1 = y_1(s) \geq 0$, $y_{n+1} = y_{n+1}(s)$ and $y_{n+2} = y_{n+2}(s)$. We take $\varphi(t_1, \cdots, t_{n-1}) = (\varphi_1, \cdots, \varphi_n)$ as an orthogonal parametrization of the unit sphere $S^{n-1}(1)$. It follows that the rotational hypersurface (see [4])

$$x : M^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2},$$

$$(s, t_1, \cdots, t_{n-1}) \mapsto (y_1(s)\varphi_1, \cdots, y_1(s)\varphi_n, y_{n+1}(s), y_{n+2}(s)).$$

$\varphi_1 = \varphi_1(t_1, \cdots, t_{n-1})$, $\varphi_1^2 + \cdots + \varphi_n^2 = 1$

is a parametrization of a rotational hypersurface generated by a curve $y_1 = y_1(s)$, $y_{n+1} = y_{n+1}(s)$ and $y_{n+2} = y_{n+2}(s)$, where the parameter s can be chosen as its arc length.

Put $f(s) = y_1(s)$, do Carmo and Dajczer proved the following

Key words and phrases: Constant m^{th} mean curvature, Embedded hypersurfaces, Willmore hypersurfaces, Lagrangian submanifolds.

* This work was supported by grant Proj. No. 11001087 of NSFC and by the Doctoral Program Foundation of the Ministry of Education of China (Grant No. 20104407120002).
Lemma 1.1. ([4]) Let M^n be a rotational hypersurface of $S^{n+1}(1)$. Then the principal curvatures λ_i of M^n are

$$\lambda_i = \lambda = -\frac{\sqrt{1-f^2-f^2}}{f}$$

for $i = 1, \ldots, n-1$, and

$$\lambda_n = \mu = \frac{\bar{f} + f}{\sqrt{1-f^2-f^2}}$$

On the other hand, the mth mean curvature H_m of the hypersurface M can be given in such a way that

$$C^m_n H_m = \sum_{1 \leq i_1 < i_2 < \cdots < i_m \leq n} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_m},$$

where $C^m_n = \frac{n(n-1)\cdots(n-m+1)}{m(m-1)\cdots 4}$, λ_i's are the principal curvatures of M.

Definition 1.1. A hypersurface M is called m-minimal if $H_m = 0$, for some integer m ($1 \leq m \leq n-1$).

Example 1.1. $M_{m,n-m} = S^{n-1}(\sqrt{\frac{n-m}{n}}) \times S^1(\sqrt{\frac{m}{n}})$, $1 \leq m \leq n-1$.

By a direct calculation, we know that $M_{m,n-m}$ has two distinct constant principal curvatures

$$\lambda_1 = \cdots = \lambda_{n-1} = \sqrt{\frac{m}{n-m}}, \quad \lambda_n = -\sqrt{\frac{n-m}{m}},$$

then $H_m \equiv 0$, and $M_{m,n-m}$ is m-minimal.

The paper is organized as follows. In section 2, we discuss n-dimensional compact nontrivial embedded hypersurfaces with constant mth mean curvature $H_m > 0$ in a unit sphere $S^{n+1}(1)$, for $1 \leq m \leq n-1$. In section 3, we consider Willmore hypersurfaces in the unit sphere $S^{n+1}(1)$. In section 4, we investigate a class of compact minimal Lagrangian submanifolds in complex hyperquadrics by studying Gauss maps of compact rotational hypersurfaces in the unit sphere.

2 Embedded constant mth mean curvature hypersurfaces

It is well known that Alexandrov [1] and Montiel-Ros [13] proved that the standard round spheres are the only possible oriented compact embedded hypersurfaces
On some class of hypersurfaces in spheres

with constant m^{th} mean curvature H_m in a Euclidean space \mathbb{R}^{n+1}, for \(m \geq 1 \). For hypersurfaces in a unit sphere $S^{n+1}(1)$, standard round spheres and Clifford hypersurfaces $S^k(a) \times S^{n-k}(\sqrt{1-a^2})$, $1 \leq k \leq n-1$ are compact embedded hypersurfaces in $S^{n+1}(1)$. Hence the following problem is interesting (also see [8], [21]):

Problem 2.1. Do there exist compact embedded hypersurfaces with constant m^{th} mean curvature H_m in $S^{n+1}(1)$ other than the standard round spheres and Clifford hypersurfaces?

When $m = 1$, namely, when the mean curvature is constant, Ripoll [18] has proved the existence of compact embedded hypersurfaces of $S^3(1)$ with constant mean curvature ($H \neq 0$, $\pm \sqrt[3]{3}$) other than the standard round spheres and the Clifford hypersurfaces. For general n, Perdomo [17] has proved

Theorem 2.1 (Main Theorem of [17]). For any $n \geq 2$ and any integer $k \geq 2$, if mean curvature H takes value between \(\frac{1}{(\tan \frac{k}{2})^2} \) and \(\frac{k^2 - 2}{\sqrt{k^2 - 1}} \), then there exists an n-dimensional compact nontrivial embedded hypersurface with constant mean curvature $H > 0$ in $S^{n+1}(1)$.

For $m = 2$, that is, when the scalar curvature is constant, Cheng, Li and Wei [21] has proved

Theorem 2.2 ([21]). For any $n \geq 3$ and any integer $k \geq 2$, if $H_2 = \frac{R_n(n-1)}{n(n-1)}$ takes value between \(\frac{1}{(\tan \frac{k}{2})^4} \) and \(\frac{k^4 - 2}{n} \), then there exists an n-dimensional compact nontrivial embedded hypersurface M with constant 2-th mean curvature $H_2 > 0$ (i.e. scalar curvature $R > n(n-1)$) in $S^{n+1}(1)$, where R is the scalar curvature of M.

For $m = 4$, Cheng, Li and Wei [21] has proved

Theorem 2.3 ([21]). For any $n \geq 5$ and any integer $k \geq 3$, if 4-th mean curvature H_4 takes value between \(\frac{1}{(\tan \frac{k}{2})^m} \) and \(\frac{k^4 - 2}{n(n-4)} \), then there exists an n-dimensional compact nontrivial embedded hypersurface with constant $H_4 > 0$ in $S^{n+1}(1)$.

For general $1 \leq m \leq n-1$, Wei and Wen [22] proved

Theorem 2.4 ([22]). For $1 \leq m \leq n-1$ and any integer $k \geq 2$, if m^{th} mean curvature H_m takes value between \(\frac{1}{(\tan \frac{k}{2})^m} \) and \(\frac{k^2 - 2}{n} \left(\frac{k^2 + m - 2}{n - m} \right)^{\frac{m-2}{2}} \), then there exists at least one n-dimensional compact nontrivial embedded hypersurface with constant $H_m > 0$ in $S^{n+1}(1)$.
Corollary 2.1. For \(n \geq 3 \) and any positive number \(C \), there exists at least one \(n \)-dimensional compact nontrivial embedded hypersurface with constant \(H_{n-1} = C \) in \(S^{n+1}(1) \).

Remark 2.1. The embedded hypersurfaces of above theorems are nothing but rotational hypersurfaces.

3 Willmore hypersurfaces

A hypersurface \(x : M^n \to S^{n+1}(1) \) is called a Willmore hypersurface if it is a critical hypersurface of the Willmore functional \(\int_M (S - nH^2) \frac{\partial}{\partial n} dv \), where \(H \) is the mean curvature and \(S \) is the square of the length of the second fundamental form. We define the following non-negative function on \(M \)

\[
\rho^2 = S - nH^2,
\]

which vanishes exactly at the umbilical points of \(M \). Willmore functional is the following non-negative functional (see [19])

\[
\int_M \rho^n dv = \int_M (S - nH^2) \frac{\partial}{\partial n} dv.
\]

It was shown in [19] that this functional is an invariant under conformal transformations of \(S^{n+1} \).

Let \(M \) be a hypersurface in \(S^{n+1}(1) \), it was proved by Li [9] and Wang [19] that \(M \) is a Willmore hypersurface if and only if

\[
-\rho^{n-2}(2HS - nH^3 - \sum_{i,j,k} h_{ij}h_{jk}h_{ki})
+ (n - 1) \Delta(\rho^{n-2}H) - \sum_{i,j} (\rho^{n-2})_{,ij}(nH\delta_{ij} - h_{ij}) = 0,
\]

where \(\Delta \) is the Laplacian, \((,)_{,ij} \) is the covariant derivative relative to the induced metric.

Guo, Li and Wang [5] first gave the following example:

Example 3.1 ([5]). The tori

\[
W_{k,n-k} = S^k \left(\sqrt{\frac{n-k}{n}} \right) \times S^{n-k} \left(\sqrt{\frac{k}{n}} \right), \quad 1 \leq k \leq n - 1
\]

are Willmore hypersurfaces in \(S^{n+1}(1) \).

Equation (*) is a complicated equation to deal with except in some special case, such as isoparametric hypersurfaces such that people know few examples of Willmore hypersurfaces in \(S^{n+1}(1) \). But for rotational hypersurfaces, Wei [20] obtained a lot of examples of Willmore hypersurfaces. In [20], Wei proved
Theorem 3.1 ([20]). For \(n \geq 3 \), let \(M \) be an \(n \)-dimensional compact \((n-1)\)-minimal rotational hypersurface in \(S^{n+1}(1) \). Then \(M \) is a Willmore hypersurface.

Theorem 3.2 ([20]). For \(n \geq 3 \) and \(1 \leq j \leq n-2 \), there are no compact \(j \)-minimal rotational Willmore hypersurfaces of \(S^{n+1}(1) \) other than round geodesic spheres.

Remark 3.1. From [17], we know that there exist many compact immersed \(k \)-minimal \((1 \leq k \leq n-1)\) rotational hypersurfaces of \(S^{n+1}(1) \).

Remark 3.2. Only the hypersurface in Theorem 3.1 conformally equivalent to the hypersurface \(S^{n-1} \left(\sqrt{\frac{1}{n}} \right) \times S^1 \left(\sqrt{\frac{n-1}{n}} \right) \) is that hypersurface itself.

4 A class of minimal Lagrangian submanifolds in complex hyperquadrics

There is an interesting link between Lagrangian geometry in the complex hyperquadrics and hypersurface geometry in the unit spheres ([2], [16], [12]). A fundamental fact is that the Gauss map of any oriented hypersurface in the unit sphere \(S^{n+1}(1) \) is always a Lagrangian immersion into the complex hyperquadric \(Q_n(\mathbb{C}) \). In [2], Castro and Urbano studied minimal Lagrangian surfaces of \(Q_2(\mathbb{C}) \), which is isometric to \(S^2 \times S^2 \), and showed that minimal Lagrangian surfaces of \(Q_2(\mathbb{C}) \) can be locally described as Gauss maps of minimal surfaces in \(S^3 \). On the other hand, Palmer gave a nice formula for the mean curvature form of the Gauss map in terms of the principal curvatures of the oriented hypersurface in the unit sphere ([16]). From this formula, it is easy to see that the Gauss map of any minimal surface in the unit 3-sphere is a minimal Lagrangian immersion in \(Q_2(\mathbb{C}) \). And the Gauss map of an oriented \emph{austere hypersurface} or an isoparametric hypersurface in \(S^{n+1}(1) \) is also a minimal Lagrangian immersion in the complex hyperquadric \(Q_n(\mathbb{C}) \). In [12], Ma and Ohnita concentrated on the relation between Lagrangian submanifolds in complex hyperquadrics and isoparametric hypersurfaces in spheres. About non-isoparametric hypersurfaces in the sphere, it is natural to ask the following problem:

Problem 4.1. Does there exist any non-isoparametric hypersurface in the sphere \(S^{n+1}(1) \) such that their Gauss maps are minimal Lagrangian immersions in the complex hyperquadric \(Q_n(\mathbb{C}) \)?

About the above problem, Li, Ma and Wei [10] gave an affirmative answer. In fact, we proved

Theorem 4.1 ([10]). There exist a lot of compact non-isoparametric hypersurfaces in the sphere \(S^{n+1}(1) \) such that their Gauss maps are minimal Lagrangian immersions in the complex hyperquadric \(Q_n(\mathbb{C}) \).
Theorem 4.2 ([10]). There exists at least one compact non-isoparametric embedded hypersurface in the sphere $S^{n+1}(1)$ for $n \geq 3$ such that its Gauss map is a minimal Lagrangian immersion in the complex hyperquadric $Q_n(\mathbb{C})$.

Our main idea is to look for compact non-isoparametric rotational hypersurfaces satisfying a weaker condition than austerity, based on Palmer’s formula. In fact, we construct compact rotational non-isoparametric hypersurfaces in the unit sphere satisfying some property, whose Gauss maps provide minimal Lagrangian immersions in the complex hyperquadric.

Acknowledgement. The author would like to express his thanks to Professor Q.-M. Cheng, Professor Z. J. Hu, Professor H. Li and Professor Y. J. Suh for their permanent encouragement and assistance.

References

