Abstract. We prove that the Ricci tensor with respect to the generalized Tanaka-Webster connection of a real hypersurface in a complex projective space of complex dimension \(n \geq 3 \) vanishes identically if and only if the real hypersurface is locally congruent to some geodesic hypersphere.

1 Introduction

Tanaka-Webster connection is a unique affine connection on a non-degenerate, pseudo-Hermitian CR manifold which associated with the almost contact structure ([7], [9]). Tanno [8] gave the generalized Tanaka-Webster connection (g-Tanaka-Webster connection) for contact metric manifolds, which coincides with Tanaka-Webster connection if the associated CR-structure is integrable. For a real hypersurface in a Kählerian manifold with an almost contact metric structure \((\eta, \phi, \xi, g)\), in [1] and [2], Cho defined the g-Tanaka-Webster connection \(\hat{\nabla}^{(k)} \) for a non-zero real number \(k \). Then we can see that \(\hat{\nabla}^{(k)} \eta = 0 \), \(\hat{\nabla}^{(k)} \xi = 0 \), \(\hat{\nabla}^{(k)} g = 0 \), \(\hat{\nabla}^{(k)} \phi = 0 \). Moreover, if the shape operator \(A \) of a real hypersurface satisfies \(\phi A + A \phi = 2 k \phi \), then the g-Tanaka-Webster connection \(\hat{\nabla}^{(k)} \) coincides with the Tanaka-Webster connection.

For real hypersurfaces in a complex space form \(\mathbb{M}^n(c) \) of constant holomorphic sectional curvature \(4c \neq 0 \), one of the major problem is to determine real hypersurfaces satisfying certain geometrical assumptions. Cho [3] determined flat Hopf hypersurfaces with respect to the g-Tanaka-Webster connection of a non-flat complex space form. Besides, he classified Hopf hypersurfaces of a non-flat complex space form which admits a pseudo-Einstein CR-structure for the g-Tanaka-Webster connection.

The purpose of this paper is to study real hypersurfaces in a complex projective space whose Ricci tensor with respect to the g-Tanaka-Webster connection \(\hat{\nabla}^{(k)} \) vanishes identically. We show the following

Theorem. Let \(M \) be a real hypersurface of a complex projective space \(\mathbb{C}P^n \),
If the Ricci tensor \(\hat{S} \) of the generalized Tanaka-Webster connection \(\hat{\nabla}^{(k)} \) vanishes identically, then \(M \) is locally congruent to a geodesic hypersphere with \(k^2 \geq 4n(n-1) \).

The author would like to express her sincere gratitude to Professor P. F. Leung for his valuable advice.

2 Preliminaries

Let \(\mathbb{C}P^n \) denote the complex projective space of complex dimension \(n \) (real dimension \(2n \)) of constant holomorphic sectional curvature 4. We denote by \(J \) the almost complex structure of \(\mathbb{C}P^n \). The Hermitian metric of \(\mathbb{C}P^n \) will be denoted by \(G \).

Let \(M \) be a real \((2n-1)\)-dimensional hypersurface immersed in \(\mathbb{C}P^n \). We denote by \(g \) the Riemannian metric induced on \(M \) from \(G \). We take the unit normal vector field \(V \) of \(M \) in \(\mathbb{C}P^n \). For any vector field \(X \) tangent to \(M \), we define \(\phi, \eta \) and \(\xi \) by

\[
JX = \phi X + \eta(X)V, \quad JV = -\xi,
\]

where \(\phi X \) is the tangential part of \(JX \), \(\phi \) is a tensor field of type (1,1), \(\eta \) is a 1-form, and \(\xi \) is the unit vector field on \(M \). Then they satisfy

\[
\phi^2X = -X + \eta(X)\xi, \quad \phi\xi = 0, \quad \eta(X) = g(X, \xi), \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y).
\]

Thus \((\phi, \xi, \eta, g)\) defines an almost contact metric structure on \(M \).

We denote by \(\nabla \) the operator of covariant differentiation in \(\mathbb{C}P^n \), and by \(\nabla \) the one in \(M \) determined by the induced metric. Then the Gauss and Weingarten formulas are given respectively by

\[
\nabla_X Y = \nabla_X Y + g(AX, Y)V, \quad \nabla_X V = -AX
\]

for any vector fields \(X \) and \(Y \) tangent to \(M \). We call \(A \) the shape operator of \(M \).

From the Gauss and Weingarten formulas, we have

\[
\nabla_X \xi = \phi AX, \quad (\nabla_X \phi) Y = \eta(Y)AX - g(AX, Y)\xi.
\]

We denote by \(R \) the Riemannian curvature tensor field of \(M \). Then the equation of Gauss is given by

\[
R(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y - 2g(\phi X, Y)\phi Z + g(AY, Z)AX - g(AX, Z)AY,
\]

and the equation of Codazzi by

\[
(\nabla_X A)Y - (\nabla_Y A)X = \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi.
\]

If \(A\xi = \lambda \xi \), \(\lambda \) being a function, then \(M \) is called a Hopf hypersurface. For a Hopf hypersurface, we see
Proposition A ([6]). Let M be a Hopf hypersurface of \mathbb{CP}^n, $n \geq 2$. If $X \perp \xi$ and $AX = \lambda X$, then $\alpha = g(A\xi, \xi)$ is constant and

$$A\phi X = \frac{\lambda \alpha + 2}{2\lambda - \alpha} \phi X.$$

Theorem B ([5]). Let M be a Hopf hypersurface of \mathbb{CP}^n. Then M has constant principal curvatures if and only if M is locally congruent to one of the following:

(A1) a geodesic hypersphere (that is, a tube over a hyperplane \mathbb{CP}^{n-1}),

(A2) a tube over a totally geodesic \mathbb{CP}^k ($1 \leq k \leq n - 2$),

(B) a tube over a complex quadric Q_{n-1},

(C) a tube over $\mathbb{CP}^1 \times \mathbb{CP}^{(n-1)/2}$ and $n(\geq 5)$ is odd,

(D) a tube over a complex Grassmann $G_{2,5}(\mathbb{C})$ and $n = 9$,

(E) a tube over a Hermitian symmetric space $SO(10)/U(5)$ and $n = 15$.

Next we introduce the notion of Tanaka-Webster connection and its generalization. Tanaka [7] defined the canonical affine connection on a non-degenerate, pseudo-Hermitian \mathcal{CR} manifold. As a generalization of Tanaka-Webster connection, Tanno [8] defined the g-Tanaka-Webster connection for contact metric manifolds by

$$\hat{\nabla}X Y = \nabla X Y + \phi AX Y \xi - \eta(Y) \phi AX - k\eta(X) \phi Y,$$

where (ϕ, ξ, η, g) is a contact metric structure. Using the naturally extended affine connection of Tanno’s g-Tanaka-Webster connection, the g-Tanaka-Webster connection $\hat{\nabla}^{(k)}$ for real hypersurfaces of Kähler manifold is given by

$$\hat{\nabla}^{(k)}X Y = \nabla X Y + \phi AX Y \xi - \eta(Y) \phi AX - k\eta(X) \phi Y$$

for a non-zero real number k (see Cho [1], [2]). Then we see that

$$\hat{\nabla}^{(k)}\eta = 0, \quad \hat{\nabla}^{(k)}\xi = 0, \quad \hat{\nabla}^{(k)}g = 0, \quad \hat{\nabla}^{(k)}\phi = 0.$$

In particular, if the shape operator of a real hypersurface satisfies $\phi A + A\phi = 2k\phi$, then the g-Tanaka-Webster connection coincides with the Tanaka-Webster connection. Next we define the g-Tanaka-Webster curvature tensor \hat{R} with respect to $\hat{\nabla}^{(k)}$ by

$$\hat{R}(X, Y)Z = \hat{\nabla}X \hat{\nabla}Y Z - \hat{\nabla}Y \hat{\nabla}X Z - \hat{\nabla}[X,Y]Z$$

for all vector fields X, Y and Z in M. We denote by \hat{S} the g-Tanaka Webster Ricci tensor, which is defined by

$$\hat{S}(Y, Z) = \text{trace of } \{X \mapsto \hat{R}(X, Y)Z\}.$$
3 The Ricci tensor of real hypersurfaces in a complex space form

To prove the theorem, we prepare the following lemma.

Lemma 3.1. Let M be a real hypersurface of a complex projective space CP^n, $n \geq 3$. If there exists an orthonormal frame $\{e_1, \cdots, e_{2n-2}, \xi\}$ on a neighborhood N of $x \in M$ such that the shape operator A can be represented as

$$
A = \begin{pmatrix}
 a_1 & 0 & h_1 \\
 \cdots & \ddots & \vdots \\
 0 & \cdots & a_{2n-2} \\
 h_1 & 0 & \cdots & 0 & \alpha
\end{pmatrix},
$$

where $Ae_1 = a_1e_1 + h_1 \xi$, $Ae_i = a_ie_i$ ($i = 1, \cdots, 2n - 2$) and $A\xi = h_1e_1 + \alpha \xi$, then we have

\begin{align*}
(a_1 - a_j)g(\nabla e_i e_1, e_j) &+ (a_j - a_i)g(\nabla e_i e_j, e_1) + a_i h_1 g(\phi e_i, e_j) \\
= 0, \\
(a_j - a_1)g(\nabla e_i e_j, e_1) - (a_1 - a_j)g(\nabla e_j e_i, e_1) &+ h_1(a_i + a_j)g(\phi e_i, e_j) \\
= 0, \\
\{2 - 2a_1a_j + \alpha(a_i + a_j)\}g(\phi e_i, e_j) - h_1g(\nabla e_i e_j, e_1) + h_1g(\nabla e_j e_i, e_1) \\
= 0, \\
(a_1 - a_i)g(\nabla e_i e_1, e_i) &- (e_1a_i) = 0, \\
h_1(2a_i + a_1)g(\phi e_i, e_1) + (a_1 - a_j)g(\nabla e_i e_i, e_1) + (e_1a_i) &+ 0, \\
1 + a_1\alpha - a_1a_i - h_1^2 g(\phi e_1, e_i) - (a_1 - a_i)g(\nabla \xi e_1, e_i) \\
&+ h_1g(\nabla e_1 e_1, e_i) = 0.
\end{align*}

Proof. By the equation of Codazzi, we have

$$
g((\nabla e_i A)e_1 - (\nabla e_i A)e_i, e_j) = 0,
$$
where \(i, j = 2, \cdots, 2n - 2\). On the other hand, we have

\[
 g((\nabla_{e_i} A)e_1 - (\nabla_{e_1} A)e_i, e_j) \\
 = g(\nabla_{e_i}(Ae_1) - A\nabla_{e_i} e_1 - \nabla_{e_1}(Ae_i) + A\nabla_{e_1} e_i, e_j) \\
 = (a_1 - a_j)g(\nabla_{e_i} e_1, e_j) + (a_j - a_i)g(\nabla_{e_1} e_i, e_j) + a_i b_1 g(\phi e_i, e_j).
\]

Thus we obtain (3.1). By the similar computation, we have our results.

\[\square\]

Lemma 3.2. Let \(M\) be a real hypersurface of a complex projective space \(\mathbb{C}P^n\), \(n \geq 3\). If the Ricci tensor \(\hat{S}\) of the generalized Tanaka-Webster connection \(\hat{\nabla}^{(k)}\) vanishes identically, then \(M\) is a Hopf hypersurface.

Proof. Suppose \(M\) is not a Hopf hypersurface. By the definition of the g-Tanaka-Webster connection, we have (see [3])

\[
\hat{R}(X, Y)Z = R(X, Y)Z + g(\phi((\nabla_X A)Y - (\nabla_Y A)X), Z)\xi \\
+ 2g(\phi AX, Z)\phi AX - 2g(\phi AX, Z)\phi AY \\
+ g((\nabla_X \phi)AY - (\nabla_Y \phi)AX, Z)\xi \\
- \eta(Z)\left(g((\nabla_X A)Y - (\nabla_Y A)X) + (\nabla_X \phi)AY - (\nabla_Y \phi)AX\right) \\
- k\left(g((\phi A + A\phi)X, Y)\phi Z + \eta(Y)(\nabla_X \phi)Z - \eta(X)(\nabla_Y \phi)Z\right) \\
+ (\phi AX, F_Y Z)\xi - \eta(F_Y Z)\phi AX - k\eta(X)\phi F_Y Z \\
- g(\phi AY, F_X Z)\xi + \eta(F_X Z)\phi AY + k\eta(Y)\phi F_X Z.
\]

(3.7)

By the definition of g-Tanaka-Webster Ricci tensor, equations of Gauss and Codazzi, direct calculation shows that

\[
\hat{S}(Y, Z) = 2ng(Y, Z) + (\text{tr}A - \eta(AX) + k)g(AY, Z) \\
- g(A^2 Y, Z) - g(\phi A \phi AY, Z) - kg(\phi A \phi Y, Z) + \eta(AY)g(AX, Z) \\
+ \eta(Z)\left(-2n\eta(Y) - \eta(AY)\text{tr}A + \eta(A^2 Y) - k\eta(AY)\right).
\]

We can choose an orthonormal basis \(\{e_1, \cdots, e_{2n-2}, \xi\}\) of \(T^*_x M\) such that the shape
operator A is represented by a matrix form

$$A = \begin{pmatrix} a_1 & \cdots & 0 & h_1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & a_{2n-2} & h_{2n-2} \\ h_1 & \cdots & h_{2n-2} & \alpha \end{pmatrix},$$

where we have put $h_i = g(Ae_i, \xi)$, $i = 1, \cdots, 2n-2$ and $\alpha = g(A\xi, \xi)$. By the direct computation using the previous equation, we have

$$\hat{S}(\xi, \xi) = 0, \quad \hat{S}(e_i, \xi) = 0,$$

(3.8)

$$\hat{S}(\xi, e_i) = (\text{tr}A - \alpha + k - a_i)h_i - g(\phi A\phi A\xi, e_i) = 0,$$

(3.9)

$$\hat{S}(e_i, e_i) = 2n + (\text{tr}A)a_i - a_i^2 - \alpha a_i + ka_i + (a_i + k)g(A\phi e_i, \phi e_i) = 0,$$

(3.10)

$$\hat{S}(e_i, e_j) = (a_i + k)g(A\phi e_i, \phi e_j) = 0 \quad (i \neq j).$$

From (3.10), if $a_i \neq -k$, then $g(A\phi e_i, \phi e_j) = 0$ for all $j \neq i$. Thus we set

$$A\phi e_i = \bar{a}_i \phi e_i + \bar{h}_i \xi,$$

where we have put $\bar{a}_i = g(A\phi e_i, \phi e_i)$ and $\bar{h}_i = g(A\phi e_i, \xi)$. If $a_i = -k$ for any i, then (3.9) and $\text{tr}A = (2n-2)a + \alpha$ imply that

$$2n + (2n - 4)a^2 = 0.$$

This is a contradiction. Thus $a_i \neq -k$ for some i. We also have

(3.11) $$\hat{S}(\phi e_i, \phi e_i) = 2n + (\text{tr}A)\bar{a}_i - \bar{a}_i^2 - \alpha \bar{a}_i + k\bar{a}_i + (\bar{a}_i + k)a_i = 0.$$ Using (3.9) and (3.11), we obtain

$$(a_i - \bar{a}_i)(\text{tr}A - \alpha - a_i - \bar{a}_i) = 0.$$ When $a_i = \bar{a}_i$, (3.9) implies

(3.12) $$2n = a_i(\alpha - 2k - \text{tr}A).$$
In this case, we put $a_i = \bar{a}_i = a$. Otherwise, if $a_i \neq \bar{a}_i$, then $\text{tr} A = a_i + \bar{a}_i + \alpha$. Using (3.9) and (3.11), we obtain

$$2a_i^2 - 2(\text{tr} A - \alpha)a_i - k(\text{tr} A - \alpha) - 2n = 0,$$
$$2\bar{a}_i^2 - 2(\text{tr} A - \alpha)\bar{a}_i - k(\text{tr} A - \alpha) - 2n = 0.$$

Therefore, $b = a_i$ and $\bar{b} = \bar{a}_i$ are solutions of the following

$$X^2 - (\text{tr} A - \alpha)X - \frac{k}{2}(\text{tr} A - \alpha) - n = 0.$$

Thus b and \bar{b} satisfies

(3.13) $b + \bar{b} = \text{tr} A - \alpha$,

(3.14) $\bar{b}b = -\frac{k}{2}(\text{tr} A - \alpha) - n$.

We suppose that there exists i such that $a_i = \bar{a}_i \neq -k$. Let $Ae_x = -ke_x + h_x \xi$.

Then (3.9) implies

$$\hat{S}(e_x, e_x) = 2n - k(\text{tr} A) - 2k^2 + \alpha k = 0.$$

From this and (3.12), we have

$$(a_i + k)(\alpha - 2k - \text{tr} A) = 0.$$

Since $a_i + k \neq 0$, we see $\alpha - 2k - \text{tr} A = 0$. This is a contradiction by (3.12). Hence, taking a suitable orthonormal basis if necessary, we have

$$A = \begin{pmatrix}
 b & \ddots & \vdots \\
 \ddots & b & \ddots \\
 \vdots & \ddots & b \\
 h_1 & \cdots & h_{2n-2}
\end{pmatrix}
\begin{pmatrix}
 h_1 \\
 \vdots \\
 h_{2n-2}
\end{pmatrix}.$$
where \(d = a \) or \(d = -k \). In the following, we use integers \(x, y, z, \cdots \) for \(Ae_x = be_x + \xi_x \) and \(s, t, u, \cdots \) for \(Ae_s = de_s + \xi_s \). We denote by \(H_1, H_2 \) and \(H_3 \) the subspaces of a tangential space spanned by \(\{ e_x \}, \{ \phi e_x \} \) and \(\{ e_s \} \), respectively. We notice that \(d \) satisfies

\[
d = g(Ae_s, e_s) = g(A\phi e_s, \phi e_s),
\]

(3.15)

\[
2n = d(\alpha - 2k - \text{tr}A).
\]

By a direct computation using (3.8), we have

\[
(\text{tr}A - \alpha + k - b + \bar{b})h_x = 0,
\]

(3.16)

\[
(\text{tr}A - \alpha + k + b - \bar{b})\bar{h}_x = 0,
\]

(3.17)

\[
(\text{tr}A - \alpha + k)h_s = 0.
\]

(3.18)

If there exists \(e_s \in H_3 \) that satisfies \(h_s \neq 0 \), then \(\text{tr}A - \alpha + k = 0 \). Using (3.13) and (3.15), we have

\[
b + \bar{b} = -k, \quad 2n = -dk.
\]

On the other hand, we can represent \(\text{tr}A \) as

\[
\text{tr}A = p(b + \bar{b}) + qd + \alpha,
\]

where \(p \) and \(q \) denote numbers of \(b \) and \(d \), respectively. From these equations and (3.13), we obtain

\[
-(p - 1)dk + qd^2 = 2(p - 1)n + qd^2 = 0.
\]

Since \(p, q \) and \(n \) are natural numbers, this is a contradiction. Hence we see that \(h_s = 0 \) for all \(e_s \in H_2 \).

If there exist \(e_x \in H_1 \) and \(\phi e_y \in H_2 \) that satisfy \(h_x \neq 0 \) and \(\bar{h}_y \neq 0 \), (3.16) and (3.17) implies \(b = \bar{b} \). This is a contradiction.

So it is sufficient to consider the case that \(\bar{h}_x = 0 \) for any \(\phi e_x \in H_2 \) and \(h_y \neq 0 \) for some \(e_y \in H_1 \). Using (3.13) and (3.16), we have

\[
b = \text{tr}A - \alpha + \frac{k}{2}, \quad \bar{b} = -\frac{k}{2}.
\]

(3.19)
On the other hand, the direct computation shows that
\[|xE - A| = (x - d)^q(x - b)^p(x - b)^{p-1}((x - b)(x - \alpha) - \sum_{x=1}^p h_x^2). \]
Thus the eigenvalue \(b \) of the symmetric matrix \(A \) has multiplicity at least \(p - 1 \).
Suppose \(e' \) satisfies \(Ae' = be' \). We can represent \(e' = X + \beta \xi \), where \(X \in H_1 \). Since \(AX = bX + h\xi \) for some \(h \), we obtain
\[Ae' = bX + h\xi + \beta(\sum h_xe_x + \alpha\xi). \]
On the other hand, we have
\[Ae' = b(X + \beta\xi) = bX + b\beta\xi. \]
From these equations, we obtain
\[\beta \sum h_xe_x + (h + \alpha\beta - b\beta)\xi = 0. \]
Since \(h_x \neq 0 \) for some \(e_x \), we have \(\beta = 0 \), that is, \(g(e', \xi) = 0 \). Thus we can represent the shape operator \(A \) by a following matrix with respect to an orthonormal basis \(\{e_1, \cdots, e_p, \phi e_1, \cdots, \phi e_p, e_{2p+1}, \cdots, e_{2n-2}, \xi\} \):
\[
A = \begin{pmatrix}
 b & \cdots & b \\
 \ddots & \ddots & \ddots \\
 b & \bar{b} & \ddots \\
 & \bar{b} & d & \ddots \\
 & & d & 0 \\
 h_1 & 0 & \cdots & 0 & \alpha
\end{pmatrix}.
\]
Since \(\text{tr}A = p(b + \bar{b}) +qd + \alpha \), using (3.13), we obtain
\[(p - 1)(b + \bar{b}) +qd = 0. \]
Case (i): First, we suppose $q \neq 0$. By (3.15) and $n \geq 3$, we see that $d \neq 0$. Thus, from (3.20), we have $p \neq 1$. If $p = 0$, then M is a Hopf hypersurface. This is a contradiction.

In the following we suppose $p \geq 2$. Using (3.15), (3.16) and $\bar{b} = -k/2$, we have

$$2n = d(-b + \bar{b} - k) = d\left(-b - \frac{3}{2}k\right).$$

From this equation and (3.20), we have the following

$$b^2 + kb - \frac{3}{4}k^2 - \frac{2nq}{p-1} = 0.$$

Since b is a continuous function on a sufficiently small neighborhood \mathcal{N} of x, p and q are constant on \mathcal{N}. Hence we see that b and d are also constant on \mathcal{N}. We suppose $AU = bU + h_1\xi$ and $AZ = dZ$. By the equation of Codazzi, computing $(\nabla_Z A)U - (\nabla_U A)Z$, we have

$$(b - d)g(\nabla_Z U, \phi Z) + dh_1 = 0$$

on \mathcal{N}. Since d is constant on \mathcal{N}, using the equation of Codazzi,

$$(\bar{b} - d)g(\nabla_Z \phi U, Z) = 0.$$

If $\bar{b} = d$, then (3.15) and (3.16) imply

$$2n = \bar{b}(-b + \bar{b} - k).$$

On the other hand, by (3.13), (3.14) and $\bar{b} = -k/2$, we obtain $\bar{b}^2 = n$. Using these equations, we obtain $b = \bar{b}$. This is a contradiction. Thus we have $b \neq d$, and hence $g(\nabla_Z \phi U, Z) = 0$. Hence we obtain

$$g(\nabla_Z U, \phi Z) = -g(U, (\nabla_Z \phi)Z) - g(U, \phi \nabla_Z Z) = g(\phi U, \nabla_Z Z) = -g(\nabla_Z \phi U, Z) = 0.$$

Therefore, we have $dh_1 = 0$. This is a contradiction.

Case (ii): Next, we consider the case that $q = 0$. From (3.14), (3.19) and (3.20),

$$b = -\bar{b} = \frac{k}{2}, \quad bb = -n.$$
We notice that the principal curvatures b and \tilde{b} have multiplicities $n - 2$ and $n - 1$, respectively. Thus we can choose an orthonormal frame \{\(e_1, e_2, \ldots, e_{n-1}, e_n, \ldots, e_{2n-2}, \xi\)\} on a neighborhood N which satisfies $Ae_1 = be_1 + h_1 \xi$, $Ae_x = be_x$ for $x = 2, \ldots, n - 1$ and $A\phi e_x = \tilde{b}\phi e_x = -b\phi e_x$ for $x = 1, \ldots, n - 1$.

Using Lemma 3.1, we have

Lemma 3.3. We suppose $q = 0$. Let ϕe_x be perpendicular to ϕe_1. Then,

\begin{align*}
\nabla_{e_1} e_1 &= \frac{h_1}{2} \phi e_1, \\
\nabla_{\phi e_x} e_1 &= \frac{2(1 + n)}{h_1} e_x.
\end{align*}

Proof. Using (3.5) and $g(\phi e_1, \phi e_x) = 0$, we have $g(\nabla_{e_1} \phi e_x, e_1) = 0$. On the other hand, putting $e_i = \phi e_1$ in (3.5),

\[h_1(2\tilde{b} + b)g(\phi^2 e_1, e_1) + (b - \tilde{b})g(\nabla_{e_1} \phi e_1, e_1) = 0,
\]

from which we obtain

\[g(\nabla_{e_1} \phi e_1) = \frac{h_1}{2}.
\]

By (3.6), we see that $g(\nabla_{e_1} e_1, e_y) = 0$ for any $e_y \in H_1$. Since $g(\nabla_{e_1} e_1, \xi) = -g(e_1, \phi Ae_1) = 0$, we have (3.21).

Next, putting $e_i = \phi e_x$ and $e_j = \phi e_y$ in (3.1), we have $g(\nabla_{\phi e_x} e_1, \phi e_y) = 0$ for any $\phi e_x, \phi e_y \in H_2$. On the other hand, using (3.2), we see that

\[g(\nabla_{\phi e_x} \phi e_y, e_1) = 0
\]

for any $e_y \in H_1$. Thus, putting $e_i = e_y$ and $e_j = \phi e_x$ in (3.3), direct calculation shows that

\[g(\nabla_{\phi e_x} e_1, e_y) = \frac{2 + 2n}{h_1} g(\phi e_y, \phi e_x).
\]

Since $g(\nabla_{\phi e_x} e_1, \xi) = 0$ and $g(\nabla_{\phi e_x} e_1, e_1) = 0$, we have (3.22).

\[\square\]

Using this lemma, we compute the sectional curvature spanned by e_1 and $\phi e_x \perp \phi e_1$. From (3.21), we have

\[g(\nabla_{\phi e_x} \nabla_{e_1} e_1, \phi e_x) = -\frac{h_1}{2} g(\phi e_1, \nabla_{\phi e_x} \phi e_x).
\]
Since $g(\phi e_x, \phi e_1) = 0$, we have
\[
g(\nabla_{\phi e_x} \phi e_x, \phi e_1) = -g(\phi e_x, \nabla_{\phi e_x} \phi e_1) = -g(\phi e_x, \phi \nabla_{\phi e_x} e_1)
\]
\[
= -g(\nabla_{\phi e_x} e_1, e_x) = -\frac{2(1+n)}{h_1}.
\]
Thus we obtain
\[
g(\nabla_{\phi e_x} \nabla e_1, \phi e_x) = 1 + n.
\]
On the other hand, by (3.22),
\[
g(\nabla e_1 \nabla e_1, \phi e_x) = g(\nabla_{\phi e_x} e_1, \phi e_x) - g(\nabla_{\phi e_x} e_1, \nabla e_1 \phi e_x)
\]
\[
= -\frac{2(1+n)}{h_1} g(e_x, \nabla e_1 \phi e_x) = 1 + n.
\]
Next, we see that
\[
g(\nabla [\phi_{e_x}, e_1] e_1, \phi e_x)
\]
\[
= g(\nabla \xi e_1, \phi e_x) g(\xi, [\phi_{e_x}, e_1]) + g(\nabla e_1, \phi e_x) g(e_1, [\phi_{e_x}, e_1])
\]
\[
+ \sum_y g(\nabla e_1 e_1, \phi e_x) g(y, [\phi_{e_x}, e_1]) + \sum_z g(\nabla e_1 e_1, \phi e_x) g(\phi e_1, [\phi_{e_x}, e_1])
\]
\[
= g(\nabla e_1, \phi e_x) g(\phi e_1, [\phi_{e_x}, e_1])
\]
\[
= 0.
\]
Here we note that $g(\nabla_{\phi e_x} \phi e_x, e_1) = 0$ from (3.4). Together with (3.23), we have the second equality. Also we remark that (3.2) and (3.22) implies $g(\nabla_{\phi e_x} e_1, \phi e_1) = g(\nabla e_1, \phi e_1) = 0$, which induces the last equality.

From these equations, we see that
\[
g(R(\phi e_x, e_1) e_1, \phi e_x)
\]
\[
= g(\nabla_{\phi e_x} \nabla e_1, \phi e_x) - g(\nabla e_1 \nabla_{\phi e_x} e_1, \phi e_x) - g(\nabla e_1, [\phi_{e_x}, e_1] e_1, \phi e_x)
\]
\[
= 0.
\]
On the other hand, the equation of Gauss implies
\[
g(R(\phi e_x, e_1) e_1, \phi e_x) = 1 + b - 1 - n.
\]
Hence we have $n = 1$. This is a contradiction. So we see that $q \neq 0$. This proves Lemma 3.2.
Real hypersurfaces in complex space forms and the generalized Tanaka-Webster connection

Using Lemma 3.2, we have our main result.

Theorem 3.4. Let M be a real hypersurface of a complex projective space $\mathbb{C}P^n$, $n \geq 3$. If the Ricci tensor \hat{S} of the generalized Tanaka-Webster connection $\hat{\nabla}^{(k)}$ vanishes identically, then M is locally congruent to a geodesic hypersphere with $k^2 \geq 4n(n-1)$.

Proof. From the proof of Lemma 3.2, M is a Hopf hypersurface with at most 4 distinct constant principal curvatures. From Theorem B, M is locally congruent to one of type (A_1), (A_2) or (B), and M has at most three constant principal curvatures. Suppose M has three constant distinct principal curvatures b, \bar{b} and α. Then we have

$$ \text{tr}A = p(b + \bar{b}) + \alpha. $$

Using (3.13), we have

$$ (p - 1)(b + \bar{b}) = 0. $$

Since $n \geq 3$, we see $b = -\bar{b}$. By Proposition A,

$$ \bar{b} = \frac{b\alpha + 2}{2b - \alpha} = -b, $$

from which we obtain $b^2 = -1$. This is a contradiction.

Let M has two distinct constant principal curvatures d and α with multiplicities $2n - 2$ and 1, respectively. Then, from (3.12),

$$ (n - 1)d^2 + kd + n = 0. $$

When $k^2 \geq 4n(n-1)$, the above equality has solutions. Conversely, if M is a Hopf hypersurface with two distinct constant principal curvatures d and α that satisfy the above equation, then its Ricci tensor \hat{S} with respect to the g-Tanaka-Webster connection satisfies (3.8)-(3.10). Therefore we have our result.

Theorem 3.5. There are no flat real hypersurface of a complex projective space $\mathbb{C}P^n$, $n \geq 3$ with respect to the generalized Tanaka-Webster connection.
Proof. From Lemma 3.2, M is a Hopf hypersurface. If $\hat{R} = 0$, then (3.7) and the equation of Gauss show

$$-k\left(g(AX, X) + g(A\phi X, \phi X)\right)$$

$$-2g(AX, X)g(A\phi X, \phi X) + 2g(AX, \phi X)^2 = 4$$

for any vector field $X \perp \xi$, $g(X, X) = 1$ (see [3]). We take X such that $AX = dX$. Then we have

$$d^2 + kd + 2 = 0.$$

From this and (3.24), we obtain

$$(n - 2)(d^2 + 1) = 0.$$

This is a contradiction.

Remark 3.6. In [3], Cho proved that a Hopf hypersurface M of a non-flat complex space form satisfies $\hat{R} = 0$ if and only if M is locally congruent to a horosphere in $\mathbb{C}H^n$, or $\dim M = 3$ and a homogeneous tube over a complex quadric Q^{n-1} and $\mathbb{R}P^n$ (resp. $\mathbb{R}H^n$) in $\mathbb{C}P^n$ (resp. $\mathbb{C}H^n$).

References

