The Serre Duality for Holomorphic Vector Bundles over
Strongly Pseudo Convex CR Manifolds

Mitsuhiro Itoh
Institute of Mathematics, University of Tsukuba, Japan
e-mail: itohm@sakura.cc.tsukuba.ac.jp

(2000 Mathematics Subject Classification : 53C40, 53C15.)

1 Main Theorem.

1.1 The Serre duality for a holomorphic vector bundle \(E \) and its dual vector bundle \(E^* \) holds over a compact, strongly pseudo convex CR manifold. This duality is a vector bundle generalization of the Serre duality for scalar valued harmonic forms over a strongly pseudo convex CR manifold given by N. Tanaka.

Let \(M \) be a compact, strongly pseudo convex CR \((2n-1)\)-dimensional manifold and \(E \) be a holomorphic vector bundle over \(M \). Assume \(2n-1 \geq 5 \) in what follows.

Then we have

Theorem A ([I-S]). Let \(H^{p,q}(M;E) \) be the space of \(E \)-valued harmonic \((p,q)\)-forms over \(M \). Then

\[
H^{p,q}(M;E) \cong H^{n-p,n-q-1}(M;E^*)
\]

for any \((p,q), 0 \leq p \leq n, 0 \leq q \leq n-1\). Here \(E^* \) is the dual of \(E \).

Theorem B ([I-S]). The \(q \)-th cohomology group \(H^q(M;E \otimes \Lambda^p \hat{T}_M^*) \) satisfies

\[
H^q(M;E \otimes \Lambda^p \hat{T}_M^*) \cong H^{n-q-1}(M;E^* \otimes \Lambda^{n-p} \hat{T}_M^*)
\]

for any \((p,q), 0 \leq p \leq n, 0 \leq q \leq n-1\). Here \(\hat{T}_M \) is the holomorphic tangent bundle of \(M \) and \(H^q(M;F) \) denotes the \(\bar{\partial} \)-cohomology group of the \(\bar{\partial} \)-complex \(\{C^q(M;F);\bar{\partial} = \bar{\partial}_f\} \) associated with a holomorphic vector bundle \(F \).

Moreover,

\[
H^q(M;E) \cong H^{n-q-1}(M;E^* \otimes \hat{K}_M), \quad 0 \leq q \leq n-1,
\]

where \(\hat{K}_M = \Lambda^n \hat{T}_M^* \) denotes the canonical complex line bundle of \(M \).

1.2 Over a compact complex \(n \)-dimensional complex manifold \(M \) the following duality

\[
H^q(M^n;\Omega^p(F)) \cong H^{n-q}(M;\Omega^{n-p}(F^*))
\]
holds for a holomorphic vector bundle F and $0 \leq p, q \leq n$, where $\Omega^p(F)$ denotes the sheaf of holomorphic F-valued p-forms. This is called Serre duality due to J.P. Serre ([S]), which is a fundamental machinery in study of the $\overline{\partial}$-cohomology of holomorphic vector bundles over a complex manifold. See for this [K] and also [O-S-S], for examples.

1.3 In his famous lecture note [T] N.Tanaka established the following duality over a strongly pseudo convex CR manifold in scalar valued harmonic (p, q)-forms:

$$ H^{p,q}(M) \cong H^{n-p,n-q-1}(M) $$

for any (p, q), $0 \leq p \leq n$, $0 \leq q \leq n - 1$. Here $H^{p,q}(M)$ is the space of harmonic (p, q)-forms on M.

2 Strongly Pseudo Convex CR Manifolds

2.1 Let M be a $(2n - 1)$-dimensional manifold. If M carries the following CR structure (S, θ, P, I, g), we call M or M with (S, θ, P, I, g) a strongly pseudo convex CR manifold (by abbreviation, s.p.c. CR manifold):

(i) θ is a contact form of M so that P is a subbundle of TM defined by $P = \text{Ker} \theta$,

(ii) S is a complex subbundle of the tangent vector bundle $T\mathbb{C}M$ such that $S \cap \overline{S} = \{0\}$,

and

$$ [\Gamma(S), \Gamma(S)] \subset \Gamma(S) $$

(iii) Further

$$ P^\mathbb{C} = S \oplus \overline{S} $$

and I is an endomorphism of P satisfying $I^2 = -\text{id}_P$ and

$$ S = \{X \in P^\mathbb{C} | IX = -\sqrt{-1}X\} $$

(iv) The symmetric bilinear form, called Levi form, $g : P \times P \rightarrow \mathbb{R}$

$$ g(X, Y) = -d\theta(IX, Y) $$

is positive definite. So the Levi form g together with the contact form θ yields a smooth Riemannian metric $h = g \oplus \theta \otimes \theta$ on M.

Since a s.p.c. CR manifold M is contact, M admits a smooth vector field ξ, called basic field (or Reeb field).
We call a s.p.c. CR manifold normal, when it holds
\[[\xi, \Gamma(S)] \subset \Gamma(S). \]

2.2 EXAMPLE 1. The following are typical examples of s.p.c. CR manifolds.
(a) a strictly convex real hypersurface \(M \) in a complex manifold \(N \),
(b) a Sasakian manifold,
(c) an \(S^1 \)-bundle over a complex Hodge manifold,
(d) link of zero locus of a complex weighted homogenious polynomial
\[f(z_1, \ldots, z_{n+1}) = \sum c_{i_1i_2\cdots i_{n+1}} z_1^{a_{i_1}} \cdots z_{n+1}^{a_{i_{n+1}}}, \]
namely, the link \(K_f \) is defined
\[K_f = S^{2n+1} \cap \{ z \in \mathbb{C}^{n+1} | f(z) = 0 \}. \]
Notice that examples (b), (c) and (d) are normal s.p.c. manifolds

3 Holomorphic Vector Bundles

3.1 Let \(E \longrightarrow M \) be a complex vector bundle over a s.p.c. CR manifold \(M \).

DEFINITION. A holomorphic structure of \(E \) is a first order differential operator
\(\bar{\partial} = \bar{\partial}_E : \Gamma(M; E) \longrightarrow \Gamma(M; E \otimes \mathbb{S}^*) \) satisfying
\[(\bar{\partial}(fu)) = f \bar{\partial}(u) + u \otimes d'' f, \]
(here \(d'' \) denotes the CR operator, that is, the \(\mathbb{S} \)-component of the ordinary exterior derivative \(d \)), namely, if we set \(\bar{\partial}_X(u) = \bar{\partial}(u)(X), X \in S \), then, equivalently
\[(\bar{\partial}_X fu) = (\bar{\partial}_X f) u + X f u, \]
and
\[(\bar{\partial}_X \bar{\partial}_Y u - \bar{\partial}_Y \bar{\partial}_X u - \bar{\partial}_{[X,Y]}u) = 0, \]
u \(\in \Gamma(M; E) \) and \(X, Y \) are smooth sections of \(S \). We call the bundle \((E, \bar{\partial}) \), or \(E \) holomorphic.

The condition (ii) means the vanishing of \((0,2) \)-component of the curvature form \(R_{\bar{D}} \), when \(E \) admits a connection \(D \) whose \((0,1) \)-part is the operator \(\bar{\partial} \).

A smooth section \(u \) of \(E \) is called holomorphic when it satisfies \(\bar{\partial} u = 0 \).

3.2 EXAMPLE 2. The quotient complex vector bundle \(\hat{T}_M = T^C M / \mathbb{S} \) of \(T^C M \) is holomorphic. It is called the holomorphic tangent bundle of \(M \), when \(M \) is s.p.c. CR. The holomorphic structure \(\bar{\partial} \) is defined
\[\bar{\partial}_X u = \pi([X, Z]), \]
where Z is a section of $\mathcal{T}^{\mathbb{C}}M$ such that $\pi(Z) = u$ and $\pi : \mathcal{T}^{\mathbb{C}}M \to \hat{T}_M$ is the projection.

Notice. If M is normal, then the basic field ξ, more precisely $\pi(\xi)$, is a holomorphic section of \hat{T}_M.

3.3 Similarly to holomorphic vector bundles over a complex manifold, we have the following basic facts.

The tensor product $E \otimes F$ of holomorphic vector bundles E and F over a s.p.c. CR manifold is also holomorphic. Moreover the dual bundle E^* and the exterior product bundle $\Lambda^k E$ are holomorphic. Furthermore, if U is a holomorphic subbundle of a holomorphic vector bundle E, then it induces the quotient bundle E/U which is holomorphic:

\[
0 \to U \to E \to E/U \to 0
\]

Example 3. Let $\mathcal{E} \to \hat{M}$ be a holomorphic vector bundle over a Hodge manifold \hat{M} and M be a s.p.c. CR manifold whose CR structure comes from the S^1-bundle over \hat{M}. Then it is not hard to show that the pull-back of \mathcal{E} over M is holomorphic.

Example 4. If M is a s.p.c. CR manifold M which is a real hypersurface in a complex manifold \hat{M}, then any holomorphic vector bundle \mathcal{E} over \hat{M} restricts to M holomorphic.

Notice that if $\dim M \geq 7$, any holomorphic vector bundle E over a s.p.c. CR manifold fulfills the local holomorphic frame property, i.e., around any point of M E admits a local holomorphic frame (s_1, \cdots, s_r). It still open whether this property holds even when $\dim \leq 5$.

4 Cohomologies $H^{p,q}(M; E)$

4.1 Let E be a holomorphic vector bundle over a s.p.c. CR manifold M. We define a complex $(C^q(M; E), \overline{\partial} = \overline{\partial}^q)$, called the $\overline{\partial}$-complex as follows: $C^q(M; E) = \Gamma(M; E \otimes \Lambda^q \mathbb{S}^\circ)$, $q = 0, 1, \cdots, n-1$ and the operator $\overline{\partial} : C^q(M; E) \to C^{q+1}(M; E)$ by

\[
(\overline{\partial}^q \varphi)(Y_1, \cdots, Y_{q+1}) = \sum_{j} (-1)^{j+1} \overline{\partial}_{Y_j} (\varphi(Y_1, \cdots, \hat{Y}_j, \cdots, Y_{q+1})) + \sum_{i,j} (-1)^{i+j} \varphi([Y_i, Y_j], Y_1, \cdots, \hat{Y}_i, \cdots, \hat{Y}_j, \cdots, Y_{q+1}),
\]

where $\varphi \in C^q(M; E)$, $Y_j \in \Gamma(M; S), j = 1, \cdots, q + 1$.

It holds

\[
\overline{\partial}^{q+1} \circ \overline{\partial}^q = 0.
\]
Hence we have the cohomology group $H^q(M; E)$, $q = 0, \cdots, n-1$ as

$$H^q(M; E) = \text{Ker} \bar{\partial} / \text{Im} \bar{\partial}^{-1}.$$ \hfill (4.17)

4.2

To define the (p, q)-cohomology group $H^{p, q}(M; E)$ we take the holomorphic vector bundle $E \otimes \Lambda^p (\hat{T}_M^*)$ by tensoring E with the holomorphic exterior product bundle $\Lambda^n (\hat{T}_M^*)$, and by $C^{p, q}(M; E)$ we denote $\Gamma(M; E \otimes \Lambda^p \hat{T}_M^* \otimes \Lambda^q S^*)$, the space of all smooth sections of $E \otimes \Lambda^p \hat{T}_M^* \otimes \Lambda^q S^*$. \hfill (4.18)

Definition. The (p, q)-cohomology $H^{p, q}(M; E)$ is defined

$$H^{p, q}(M; E) = H^q(M; E \otimes \Lambda^p \hat{T}_M^*).$$ \hfill (4.19)

5 Harmonic E-valued (p, q)-forms

5.1

Let M be, same as before, a s.p.c. CR manifold. Then M admits the canonical volume form $dv = \theta \wedge (d\theta)^{n-1}$ and also the Riemannian metric $h = g \oplus \theta \otimes \theta$ induced from the Levi form g and the contact form θ of M.

In order to get the notion of harmonic forms taking values in $E \otimes \Lambda^p \hat{T}_M^*$ we need to define the formal adjoint $\bar{\partial}^*$ of the operator $\bar{\partial}$. For this, just like the complex manifold case as in [K-M], we define the Hodge star operator

$$\sharp : E \otimes \Lambda^p \hat{T}_M^* \otimes \Lambda^q S^* \longrightarrow E^* \otimes \Lambda^{n-p} \hat{T}_M^* \otimes \Lambda^{n-q-1} S^*,$$ \hfill (5.20)

defined by $\psi \longrightarrow \sharp(\psi) = \overline{\psi}$, by exploiting the identification (18). Then the formal adjoint $\tilde{\partial}^*$ is defined

$$\tilde{\partial}^* = (-1)^{n-k} \sharp \circ \bar{\partial} \circ \sharp$$ \hfill (5.21)

on $E \otimes \Lambda^p \hat{T}_M^* \otimes \Lambda^q S^*$, $k = p + q$. It is not difficult to show that $\tilde{\partial}^*$ is the L^2-adjoint of the holomorphic operator $\bar{\partial}$:

$$\langle \bar{\partial}\varphi, \psi \rangle = \langle \varphi, \tilde{\partial}^* \psi \rangle$$ \hfill (5.22)

for $\varphi \in \mathcal{C}^{p,q}(M; E)$ and $\psi \in \mathcal{C}^{p,q+1}(M; E^*)$. The inner product is

$$\langle \varphi, \psi \rangle = \int_M (\varphi, \psi) \ dv.$$

A section φ of $\mathcal{C}^{p,q}(M; E)$ is called harmonic when it satisfies

$$\langle \bar{\partial}^* \bar{\partial} + \bar{\partial} \bar{\partial}^* \rangle \varphi = 0$$ \hfill (5.23)
and denote by $H^{p,q}(M;E)$ the space of all E-valued harmonic (p,q)-forms.

5.2 By Kohn’s theorem (K), if $\dim M \geq 5$, then $H^{p,q}(M;E)$ is finite dimensional and $C^{p,q}(M;E)$ is endowed with the Hodge-decomposition property in terms of the Laplace operator $\bar{\partial} \partial + \partial \bar{\partial}$, (for the details, see [T], or the original paper [K]), so that we get the first part of THEOREM B from THEOREM A.

Proof of Theorem A. Let ψ be an element of $H^{p,q}(M;E)$. Then we have by definition

$$\bar{\partial}_E \psi = 0, \quad \text{and} \quad \bar{\partial}^*_E \psi = 0.$$

Since $\psi \in C^q(M; E \otimes \Lambda^p \hat{T}_M)$, \hfill (5.24)

$$\sharp \psi \in C^{n-q-1}(M; E^* \otimes \Lambda^{n-p} \hat{T}_M).$$

Note that $\sharp \psi$ is an E^*-valued form.

Then by exploiting the definition of the formal adjoint, we have

$$\bar{\partial}_{E^*} (\sharp \psi) = (-1)^{n-k} \sharp (\bar{\partial}_E)^* \psi = 0,$$

where $k = p + q$ and

$$\bar{\partial}_{E^*} (\sharp \psi) = (-1)^{n-k} \sharp E^*_E (\sharp \psi) = (-1)^{n-k} \sharp \bar{\partial}_E \psi = 0.$$

Thus, we have

$$\sharp \psi \in H^{n-p,n-q-1}(M; E^*)$$

and from that $\sharp^* = \sharp^{-1}$, \sharp induces the isomorphism

$$\sharp: H^{p,q}(M; E) \longrightarrow H^{n-p,n-q-1}(M; E^*)$$

(5.26)

to obtain Theorem A.

6 **Remarks**

6.1 To show the last half part of THEOREM B, we observe the following.

(6.27) \hfill \begin{align*}
H^q(M; E) & \cong H^{0,q}(M; E) \\
& \cong H^{n,n-q-1}(M; E^*) \\
& \cong H^{0,n-q-1}(M; \Lambda^n \hat{T}_M \otimes E^*) \\
& \cong H^{n-q-1}(M; \Lambda^n \hat{T}_M \otimes E^*),
\end{align*}

which is just $H^{n-q-1}(M; E^* \otimes \hat{K}_M)$.
6.2 Let M be a s.p.c. CR $(2n - 1)$-dimensional manifold which is normal and ξ be a basic field of M. Then ξ is a holomorphic section of the holomorphic tangent bundle \hat{T}_M which vanishes nowhere.

Then this field ξ induces the inner product which satisfies for $\alpha \in \mathcal{C}^\infty(M; E \otimes \Lambda^p\hat{T}_M) = \Gamma(M; E \otimes \Lambda^p\hat{T}_M^* \otimes \Lambda^q\hat{S})$

$$\overline{\partial} i_\xi \alpha = i_\xi \overline{\partial} \alpha$$

so that this induces a linear map between the cohomology groups:

$$i_\xi : H^{p,q}(M; E) \longrightarrow H^{p-1,q}(M; E) : [\psi] \mapsto [i_\xi \psi]$$

which fulfills

$$i_\xi \circ i_\xi = 0.$$

6.3 Example 5 Let $M = K_f$ be a link of zero locus in \mathbb{C}^4 of the weighted homogeneous polynomial $f = z_1^6 + z_2^6 + z_3^6 + z_4^2$. Then $\dim M = 5$ and the weight of f is $(1, 1, 1, 3)$ and the degree $d = 6$. So the Hodge numbers are $h^{2,0}(M) = 1$ and $h^{1,1}(M) = 19$ by computing in terms of the Milnor algebra associated to the f, where $h^{p,q}(M) = \dim \mathbb{C} H^{p,q}(M)$. See [I] for the counting formula of $h^{p,q}(M)$.

By applying the Serre duality in the trivial bundle case, M admits a non-trivial holomorphic 3-form ψ, since $H^0(M; \Lambda^3\hat{T}_M^*) \cong \mathbb{C}$. This is because

$$h^{2,0} = h^{0,2} = h^{3,0} = \dim \mathbb{C} H^{3,0}(M).$$

Here the second equality is from the Serre duality and then

$$H^{3,0}(M) \cong H^0(M; \Lambda^3\hat{T}_M^*).$$

Moreover $i_\xi \psi \in H^0(M; \Lambda^2\hat{T}_M^*)$ is a holomorphic 2-form on M which is also non-trivial so that this form yields a base of $H^{2,0}(M) \cong \mathbb{C}$.

References

