Minimal surfaces in S^3 and Yau’s conjecture

Jaigyoung Choe
Department of Mathematics, Seoul National University, Seoul, 151-742, Korea
e-mail: choe@math.snu.ac.kr

Abstract. We list some known facts and open problems about minimal surfaces in S^3. And we sketch a proof of Yau’s conjecture for Lawson’s minimal surfaces and Karcher-Pinkall-Sterling’s minimal surfaces.

1 Minimal Surfaces in S^3

The catenoid, the helicoid, Scherk’s surfaces, and some triply periodic minimal surfaces had been the only complete embedded minimal surfaces known to exist in \mathbb{R}^3 until Costa and Hoffman-Meeks constructed minimal surfaces of arbitrary genus in 1980’s. In the three-dimensional sphere S^3 Lawson [L1] constructed compact embedded minimal surfaces of arbitrary genus, and Karcher-Pinkall-Sterling [KPS] added some more examples. Both in \mathbb{R}^3 and in S^3, a paucity of examples has been a main obstacle to the study of embedded minimal surfaces. Still, we know some a priori properties of compact minimal surfaces in S^3 as follows.

1. An immersed minimal sphere in S^3 is totally geodesic. (Almgren)
2. The center of gravity of a compact minimal submanifold of S^n is at the origin.
3. Two minimal hypersurfaces of S^n must intersect each other. (Frankel [F])
4. For each integer g there is a compact embedded minimal surface of genus g in S^3. (Lawson [L1])
5. In S^3 there exist compact embedded minimal surfaces of genus 3, 5, 6, 7, 11, 17, 19, 73, and 601. (Karcher-Pinkall-Sterling [KPS])
6. To each complete minimal surface in S^3 there is a complete locally isometric surface of constant mean curvature in \mathbb{R}^3. (Lawson [L1])
7. Embedded minimal surfaces in S^3 cannot have knotted handles. (Lawson [L2])
8. If a compact branched minimal surface and a great circle in S^3 are disjoint, then they are linked. (Solomon [S])
9. The space of compact embedded minimal surfaces in S^3 is compact in C^k topology. (Choi-Schoen [ChS])
10. The Morse index of compact minimal surfaces in \mathbb{S}^3 is 1 for the great sphere, 5 for the Clifford torus $\mathbb{S}^1(1/\sqrt{2}) \times \mathbb{S}^1(1/\sqrt{2})$, and higher for the others. (Urbano [U])

11. If the boundary of a compact immersed orientable and stable minimal hyper-surface Σ in \mathbb{S}^n lies in a great sphere \mathbb{S}^{n-1}, then $\Sigma \subset \mathbb{S}^{n-1}$. (Ros [R])

12. If the boundary of a compact immersed orientable minimal hypersurface Σ in \mathbb{S}^n lies in a great sphere \mathbb{S}^{n-1}, then $\text{Vol}(\Sigma) \geq \frac{1}{2}\text{Vol}(\mathbb{S}^{n-1})$, with equality only if Σ is a hemisphere. (Ros [R])

13. The only compact embedded orientable minimal surface in \mathbb{S}^3 that bounds a great circle is the hemisphere. (Hardt-Simon [HS])

14. If a compact embedded orientable minimal surface Σ in \mathbb{S}^3 bounds two orthogonally intersecting great circles, then Σ is a half of the Clifford torus. (Hardt-Rosenberg [HR])

15. In \mathbb{S}^n any great sphere divides a compact embedded minimal hypersurface into two connected pieces. (Ros [R])

16. The Gauss map of a minimal surface $\Sigma \subset \mathbb{S}^3$ gives a branched minimal surface Σ^* in \mathbb{S}^3. Moreover, $\Sigma^{**} = \Sigma$. (Lawson [L1])

17. If Σ is a compact embedded minimal torus in \mathbb{S}^3, then its Gauss image Σ^* is also embedded. (Ros [R])

18. For each conformal structure on a compact surface, there exists at most one metric admitting a minimal immersion into \mathbb{S}^n on which the first eigenvalue of the Laplacian equals two. (Montiel-Ros [MR])

19. The only minimal torus in \mathbb{S}^3 on which the first eigenvalue of the Laplacian equals two is the Clifford torus. (Montiel-Ros [MR])

Now let’s consider some open problems and conjectures for minimal surfaces in \mathbb{S}^n:

1. Is there a complete immersed minimal surface in \mathbb{S}^3 which is disjoint from a great sphere \mathbb{S}^2? This is an \mathbb{S}^3-version of Calabi’s question which was solved affirmatively by Nadirashvili [N].

2. For any given integer g there are only finitely many noncongruent minimal surfaces of genus g in \mathbb{S}^3.

3. (Lawson’s conjecture) The only embedded minimal torus in \mathbb{S}^3 is the Clifford torus. Combining with (2), one may even conjecture that the only compact embedded minimal surfaces are the surfaces $\xi_{m,k}$ constructed by Lawson in [L1].

4. (Yau’s conjecture [Y]) The first eigenvalue of the Laplacian on a compact embedded minimal hypersurface Σ^n in \mathbb{S}^{n+1} is equal to n.

Let x_1, \ldots, x_m be the rectangular coordinates of \mathbb{R}^m and let $X := (x_1, \ldots, x_m)$. Given a submanifold M of \mathbb{R}^n, it is well known that

$$\Delta_M X = \vec{H},$$

where \vec{H} is the mean curvature vector of M. Therefore x_1, \ldots, x_m are harmonic functions on a minimal submanifold $\Sigma \subset \mathbb{R}^m$. If Σ^n is minimal in S^{m-1}, then the cone $O \times \Sigma$ is also minimal in \mathbb{R}^m. Therefore $\Delta_\Sigma X$ must be perpendicular to S^{m-1} and hence $\Delta_\Sigma X$ is parallel to X. Then it is not difficult to show that

$$\Delta_\Sigma X + nX = 0.$$

Therefore x_1, \ldots, x_m are eigenfunctions of Δ with eigenvalue n on the n-dimensional minimal submanifold Σ of S^{m-1}.

Thus it was natural for Yau to propose his conjecture as above. Yau’s conjecture does not concern minimal surfaces with nonempty self intersection and minimal surfaces of high codimension because a minimal surface of revolution of large area in S^3 and the Veronese surface in S^4 have the first eigenvalue much smaller than two.

It may have been just out of curiosity that Yau made his conjecture. But Montiel-Ros [MR] showed that Yau’s conjecture has a geometric implication: If Yau’s conjecture is true, then the Clifford torus is the only embedded minimal torus in S^3, i.e., Lawson’s conjecture is true as well. It should be mentioned that Choi-Wang [CW] proved that the first eigenvalue on Σ^n is at least $n/2$.

There is a well-known theorem by Courant that the first eigenfunction of Δ on Σ has two nodal domains. In this regard it is very interesting to note that a compact embedded minimal surface in S^3 has two-piece property: Ros [R] proved that any great sphere in S^3 divides a compact embedded minimal surface Σ into two connected pieces. However, if Yau’s conjecture is true, then Ros’s two-piece property follows from Courant’s theorem. Indeed, if 2 is the first eigenvalue of Δ, then Courant’s nodal theorem for the linear function $\phi = a_1 x_1 + \ldots + a_4 x_4$ with $\phi|_{\mathbb{S}^2} = 0$ implies the two-piece property.

Therefore, now that the two-piece property holds, one might presume that Yau’s conjecture should be true. As a matter of fact, the author and M. Soret [CS] found that by using Courant’s nodal theorem and Ros’s two piece property one can prove Yau’s conjecture for minimal surfaces in S^3 which are sufficiently symmetric (as much symmetric as Lawson’s surfaces and Karcher-Pinkall-Sterling’s surfaces).

2 Yau's Conjecture

In this section we briefly outline the arguments of our paper [CS].

Lemma 1. If the boundary of a compact immersed orientable and stable minimal hypersurface Σ^n in S^{n+1} lies in a great sphere, then Σ is totally geodesic.
Proof. See Lemma 1 of [CS].

Theorem 1. Any great sphere in \mathbb{S}^{n+1} divides a compact embedded minimal hypersurface Σ of \mathbb{S}^{n+1} into two connected pieces.

Proof. See Theorem 1 of [CS].

Lemma 2. Let G be a group of reflections in \mathbb{S}^3. Assume that a minimal surface $\Sigma \subset \mathbb{S}^3$ is invariant under G. If the first eigenvalue of Δ on Σ is less than 2, then the first eigenfunction must be invariant under G.

Proof. (Sketch) Let $\sigma \in G$ be the reflection across a great sphere Π in \mathbb{S}^3 and let ϕ be an eigenfunction on Σ corresponding to the first eigenvalue λ_1. Note that $\phi \circ \sigma$ is again an eigenfunction with eigenvalue λ_1. Consider

$$\psi(x) := \phi(x) - \phi \circ \sigma(x).$$

If ψ is the null function then ϕ is invariant under σ. If $\psi \neq 0$ then ψ itself is an eigenfunction with eigenvalue λ_1. Furthermore its nodal set contains $\Sigma \cap \Pi$. But Courant’s nodal theorem implies that ψ vanishes only on $\Sigma \cap \Pi$. Let D_1, D_2 be the components of $\Sigma \setminus \Pi$ such that ψ is positive on D_1 and negative on D_2. By Ros’s two-piece property D_1, D_2 are each connected. One can find a linear function of \mathbb{R}^4 $\xi = a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4$ that vanishes on Π and is positive on D_1. Clearly ξ is orthogonal to ψ on Σ. But ψ and ξ have the same sign on $D_1 \cup D_2$, which contradicts the orthogonality of ψ and ξ. Therefore ψ must vanish on Σ. This completes the proof as σ is an arbitrary element of G.

Theorem 2. Let Σ be a minimal surface in \mathbb{S}^3 which is invariant under a group G of reflections. Suppose that the fundamental domain of G in \mathbb{S}^3 is a tetrahedron T. If the fundamental patch $S = \Sigma \cap T$ is simply connected and has four edges, then the first eigenvalue of the Laplacian on Σ equals 2.

Proof. Suppose $\lambda_1 < 2$. Let ϕ be an eigenfunction with eigenvalue λ_1 on Σ and $N \subset \Sigma$ the nodal set of ϕ. From Lemma 2 it follows that $S \setminus N$ has at least two
connected components. Since S is simply connected one can find a face F of T and a component D of $S \setminus N$ such that ∂D is disjoint from F. Let Π be the great sphere containing F and let \hat{D} be the mirror image of D across Π. Denote by D_1, D_2, D_3 the components of $\Sigma \setminus N$ containing D, \hat{D} and intersecting Π, respectively. We claim that D_1, D_2, D_3 are all distinct. D_2 is the mirror image of D_1 and D_3 is nonempty and symmetric with respect to Π. See [CS] for the details. Therefore ϕ has at least three nodal domains, which contradicts Courant’s nodal theorem. Thus $\lambda_1 = 2$. □

Lemma 3. Lawson’s minimal surfaces $\xi_{m,k}$ can also be constructed in the same way as Karcher-Pinkall-Sterling’s surfaces are constructed.

Proof. See Section 2 of [CS]. □

Corollary 1. The first eigenvalue of the Laplacian on Lawson’s embedded minimal surfaces $\xi_{m,k}$ and Karcher-Pinkall-Sterling’s minimal surfaces in S^3 is equal to 2.

Theorem 3. Let Σ be a compact embedded minimal surface in S^3 which is invariant under a group or reflections, and let $D \subset \Sigma$ be a fundamental patch in a tetrahedron of the tessellation. If D is simply connected and has at most five edges, then $\lambda_1(\Sigma) = 2$.

Proof. See Theorem 3 of [CS]. □

Remark. If the fundamental patch D has six edges, λ_1 may still equal two in case the genus of the minimal surface is sufficiently small. See Section 6 of [CS] for the details.

References

