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1. Introduction

Geometry of horospheres and their defining function, the Busemann function, is one of interesting geo-
metrical subjects for nonpositively curved manifolds. Let (X, g) be an n-dimensional Hadamard manifold,
i.e., a simply connected, complete Riemannian manifold of nonpositive curvature. In (X, g) a horosphere is
defined as a level hypersurface H = {x ∈ X | Bθ(x) = const.} of the Busemann function Bθ associated with
a geodesic γ = γ(t) which goes to an ideal point θ ∈ ∂X at infinity. The gradient field ∇Bθ and Hessian
∇ dBθ, respectively, stand for a unit normal field and the second fundamental form of the horosphere H
whose hypersurface geometry can be described in terms of ∇ dBθ.

Horospheres of a typical Hadamard manifold have geometrically nice properties. In fact, a horosphere of
the real hyperbolic space RHn is flat, totally umbilic with constant principal curvature, and a horosphere of
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the complex hyperbolic space CHm is characterized, from the results in [6], as one of Hopf real hypersurfaces
with constant principal curvature among other tubular hypersurfaces. See also [7,8,14].

Taking an arbitrary real number t as level value of a Busemann function, we obtain, for a fixed θ ∈ ∂X,
a one parameter family of horospheres. In fact, for a given Bθ associated with a geodesic γ of [γ] = θ

the horospheres {H(γ(t),θ) = B−1
θ (−t) | t ∈ R}, each of which passes through γ(t) constitute a foliation

of the ambient manifold X invariant by the geodesic flow. Geometric behavior of one parameter family of
horospheres can be investigated by means of behavior of stable (or unstable) Jacobi tensor fields in time t

along a geodesic γ.
An extremely important feature of stable (or unstable) Jacobi tensor fields is that along a geodesic γ

tending to a θ ∈ ∂X they induce a one parameter family of shape operators St, defined on the one parameter
family of horospheres {H(γ(t),θ) | t ∈ R}. A one parameter family of shape operators {St | t ∈ R} is a solution
of the Riccati equation (for its precise definition see Section 3) so that {St | t ∈ R} gives an appropriate tool
for studying hypersurface geometry of horospheres. Here, we give an additional remark that the stable (or
unstable) Jacobi tensor fields are also important in dynamical system of the geodesic flow on the unit sphere
bundle of X. For this and behavior of the Anosov geodesic flow which is closely related to horospheres on
a negatively curved closed manifolds, we refer to [5,13,18,22,35,37,49].

The purpose of this article is to present, from hypersurface geometry applied to one parameter families of
horospheres, volume entropy rigidity theorems for the complex hyperbolic space CHm and the quaternionic
hyperbolic space HHm (Theorems 1.5 and 1.7) and theorems which characterize CHm and HHm in terms
of the value of second fundamental form h(·, ·) associated with structure vectors (Theorems 1.8 and 1.9).

In the volume entropy rigidity theorems an Hadamard manifold is assumed to be asymptotically harmonic.
Here

Definition 1.1. (See [40].) An Hadamard manifold (X, g) is called asymptotically harmonic if ΔBθ(x) is a
constant −c for each x ∈ X and θ ∈ ∂X, where Δ = −∇i∇i is the Laplacian of the metric g.

The asymptotical harmonicity is equivalent to saying that the mean curvature of all horospheres in X

is commonly constant −c. Here, by “mean” one means the sum of all principal curvatures. Furthermore
(X, g) is asymptotically harmonic if and only if the positive function defined by P (x, θ) = exp{−cBθ(x)} is
harmonic on X for any θ ∈ ∂X.

The motivation to our study is properly geometrical understanding of asymptotically harmonic Hadamard
manifolds, since asymptotically harmonic manifolds appear in Fisher information geometry which plays a
statistical role in the space P+(∂X, dθ) of probability measures on the ideal boundary ∂X of an Hadamard
manifold (X, g). As Theorem 1.3 in [31] illustrated, the constant c > 0 in Definition 1.1 appears as a
homothety constant of the homothety map Φ : (X, g) → (P+(∂X, dθ), G), where G is statistically defined
metric over P+(∂X, dθ), called Fisher information metric (see [1,23,31,34]).

Theorem 1.2. (See [31].) Assume that an Hadamard manifold (X, g) admits a normalized Poisson kernel
P (x, θ) (the fundamental solution to the Dirichlét problem at the ideal boundary; Δu = 0, u|∂X = f). Let Φ
be a map from X to the space P+(∂X, dθ), defined by x �→ μ(x) = P (x, θ) dθ.

Assume that the map Φ fulfills Φ∗G = c2

n g (c > 0 is a constant) and further Φ is a harmonic map. Then,
the Poisson kernel can be described as P (x, θ) = exp{−cBθ(x)} in terms of Bθ (hence, ΔBθ = −c, so (X, g)
turns out to be asymptotically harmonic), and moreover (X, g) satisfies the axiom of visibility (see [20] for
the notion of visibility).

The asymptotical harmonicity constant c appearing as the homothety constant in the above theorem has
another geometrical meaning. The constant c coincides with the volume entropy ρ(X) of X, as indicated
in [33].
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Theorem 1.3. Let (X, g) be an Hadamard manifold. If (X, g) is asymptotically harmonic with ΔBθ ≡ −c,
then the volume entropy ρ(X) = c.

Here, the volume entropy ρ(X) = limr→∞
1
r log VolB(x; r) is an invariant of a Riemannian manifold

measuring the exponential growth rate of the volume of geodesic ball B(x; r). Note that for a compact
Riemannian manifold X of nonpositive curvature the volume entropy of its universal covering X̃ coincides
with the topological entropy of the geodesic flow on X. See [43].

Let (X, g, J) be an almost Hermitian Hadamard manifold, i.e., an Hadamard manifold equipped with an
almost complex structure J which satisfies g(J ·, J ·) = g(·, ·). Then, we have the following volume entropy
rigidity theorem for an almost Hermitian Hadamard manifold (X, g, J) which is nearly Kähler.

Definition 1.4. (See [25].) Let (X, g, J) be an almost Hermitian manifold. Then (X, g, J) is called nearly
Kähler, if (X, g, J) satisfies

(∇uJ)u = 0

for any tangent vector u.

Being nearly Kähler is a notion in Hermitian geometry weaker than Kähler. Notice that for a horosphere
H(x,θ) of (X, g, J) the vector field ξ = J∇Bθ defined at any point y ∈ H(x,θ) is tangent to H(x,θ) and parallel
along a geodesic, an integral curve of Busemann function. We call ξ a structure vector field.

Theorem 1.5. Let (Xn, g, J) be a nearly Kähler Hadamard manifold of real dimension n = 2m (� 4) of Ricci
curvature Ricg � −2(m + 1). Assume that (i) (X, g, J) is asymptotically harmonic and (ii) h(ξ, ξ) � −2
for any (x, θ) ∈ X × ∂X, where h(ξ, ξ) is the value of the second fundamental form of the field ξ = J∇Bθ.
Then ρ(X) � 2m and equality ρ(X) = 2m holds if and only if (X, g, J) is biholomorphically isometric to
CHm of constant holomorphic curvature −4.

A similar rigidity theorem for compact manifolds is appeared in [41]. Let M be a compact Kähler manifold
M with biholomorphic curvature � −2. Then, ρ(M̃) � 2m for the universal covering M̃ , and equality holds
if and only if the universal covering M̃ is isometric to CHm of constant holomorphic curvature −4. Munteanu
obtained in [44] a similar rigidity theorem in terms of the bottom spectrum λ1 of the Laplacian Δ.

Next we consider the case of quaternionic Kähler Hadamard manifolds.

Definition 1.6. (See [11,29,39].) A Riemannian manifold X is called quaternionic Kähler, if it admits a rank
three vector subbundle V ⊂ End(TX) satisfying the following:

(i) in any local coordinate of X there exists a local basis {J1, J2, J3} of V such that {J1, J2, J3} gives a
quaternionic structure on X and

〈Jiu, Jiv〉 = 〈u, v〉, i = 1, 2, 3

for any u, v ∈ TX, and
(ii) for any section ϕ ∈ Γ (V ) and any vector field u on X the covariant derivative ∇uϕ belongs to Γ (V ).

Theorem 1.7. Let (X, g, V ) be a quaternionic Kähler Hadamard manifold of real dimension 4m (� 8) which
is asymptotically harmonic, and with scalar curvature scalg � −16m(m + 2). If ρ(X) = 2(2m + 1), then
(X, g, V ) is isometric to the quaternionic hyperbolic space HHm of constant holomorphic curvature −4.
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The scalar curvature condition can be replaced with Ricg � −4(m + 2), since a quaternionic Kähler
manifold of dimension 4m � 8 is Einstein.

Based on the quaternionic curvature identities stated in Section 7, Theorem 1.7 does not require any
condition on the second fundamental form of horospheres, compared with Theorem 1.5. Moreover in general,
it holds ρ(X) � 2(2m + 1) for a complete quaternionic Kähler manifold (X, g, V ) of scalg � −16m(m + 2).
See [39] for this.

Replacing the Ricci curvature assumption from Theorem 1.5 with a holomorphic curvature bounded-
ness from below, we obtain the following characterization of the complex hyperbolic space, without the
assumption of asymptotical harmonicity.

Theorem 1.8. Let (X, g, J) be a nearly Kähler Hadamard manifold of real dimension n = 2m (� 4) and of
holomorphic curvature � −4. Assume that the structure vector field ξ = J∇Bθ on any horosphere H(x,θ)
satisfies h(ξ, ξ) � −2 for any (x, θ) ∈ X × ∂X. Then (X, g, J) is biholomorphically isometric to CHm of
constant holomorphic curvature −4.

A characterization of a quaternionic Kähler Hadamard manifold is similarly stated as follows.

Theorem 1.9. Let (X, g, V ) be a quaternionic Kähler Hadamard manifold of real dimension n = 4m (� 8)
and with scalar curvature scalg � −16m(m + 2). If

∑3
i=1 h(ξi, ξi) � −6 (ξi = Ji∇Bθ, i = 1, 2, 3) for any

(x, θ) ∈ X × ∂X, then (X, g, V ) is isometric to HHm of constant holomorphic curvature −4.

We give finally the volume entropy rigidity of a real hyperbolic space as follows.

Theorem 1.10. Let (X, g) be an n-dimensional Hadamard manifold of Ricci curvature Ricg � −(n − 1). If
(X, g) is asymptotically harmonic, then

ρ(X) � n− 1

and equality holds if and only if (X, g) is isometric to the real hyperbolic space RHn of constant curvature −1.

The inequality ρ(X) � n−1 is derived from the standard volume comparison argument for an Hadamard
manifold of Ricg � −(n− 1) (see for this [24,42]). For the corresponding rigidity theorem in a compact case
refer to [41,42].

This paper is organized as follows. In Section 2 we give notations and basic properties of Hadamard man-
ifolds and geometry of horospheres needed in the subsequent sections. In Section 3 we introduce (un)stable
Jacobi tensor fields and the Riccati equation with respect to shape operators and in Section 4 we treat
geometry of asymptotically harmonic manifolds and give a sketch of a proof to Theorem 1.3. In Section 5
we deals with proving Theorem 1.7. Strum’s argument applied to the scalar Riccati differential inequality
together with a proof of Theorem 1.8 are given in Section 6. In final section we deal with quaternionic
Kähler geometry with basic curvature identities and give a proof to Theorems 1.7 and 1.9.

2. Preliminaries

Let (X, g) be an n-dimensional Hadamard manifold. For convenience sake, we write sometimes a Rie-
mannian metric g as 〈·, ·〉. From the Cartan–Hadamard theorem X is diffeomorphic to the Euclidean space
or an open n-ball.

Let γ1 and γ2 be two geodesic rays on (X, g); γi : [0,∞) → X, i = 1, 2. Then, γ1 and γ2 are said to
be asymptotically equivalent, if there exists a constant C > 0 such that d(γ1(t), γ2(t)) < C for all t � 0.
Throughout this paper geodesics are assumed to have unit speed. The set of asymptotical equivalence classes



54 M. Itoh et al. / Differential Geometry and its Applications 35 (2014) 50–68
[γ] of all geodesic rays on (X, g) is called the ideal boundary of (X, g), denoted by ∂X. We say a geodesic
ray γ converges to an ideal point θ ∈ ∂X, when γ is a representative of θ.

For any point x ∈ X and any θ ∈ ∂X there exists a unique geodesic γ such that γ(0) = x and [γ] = θ so
that we identify ∂X with the unit tangent sphere SoX ∼= Sn−1 at a certain base point o ∈ X by identifying
v ∈ SoX with [γv] ∈ ∂X, where γv is the geodesic ray such that γv(0) = o, γ′

v(0) = v. The space X ∪ ∂X is
equipped with the cone topology which gives a compactification of X homeomorphic to a closed n-disk in
R

n (see [4] for the details).
Fix a point o ∈ X and θ ∈ ∂X and let γ = γ(t) be a geodesic such that γ(0) = o and [γ] = θ. Then, the

Busemann function on an Hadamard manifold (X, g), normalized at the point o, is defined by

Bθ(x) = lim
t→∞

(
d
(
x, γ(t)

)
− t

)
. (1)

We call occasionally Bθ the Busemann function associated with the geodesic γ, when we strengthen the
geodesic defining the Busemann function.

The Busemann function on an Hadamard manifold is convex, at least C2 (see [19,28]), and is characterized
as a convex C1-function b on X satisfying |∇b| ≡ 1 (see [4, Lemma 3.4] and [46]). So, if Bθ is the Busemann
function normalized at another point but associated with a geodesic tending to the same θ, the difference
Bθ −Bθ must be a constant function on X.

A level hypersurface of the Busemann function Bθ that contains a point x ∈ X is called a horosphere
centered at θ and passing through x, denoted by H(x,θ), i.e.,

H(x,θ) =
{
y ∈ X

∣∣ Bθ(y) = Bθ(x)
}
. (2)

Note that the horosphere H(x,θ) is derived also from taking limit of the geodesic spheres G(γ(t), t) centered
at γ(t) with radius t as t → ∞, where γ is the geodesic such that γ(0) ∈ H(x,θ) and [γ] = θ.

The gradient field ∇Bθ is globally defined on X and of unit norm. The integral curves of ∇Bθ are exactly
geodesics converging to θ of the reversed parameter t. The restriction of ∇Bθ to a horosphere H(x,θ) gives
a C1 unit vector field ν outward normal to H(x,θ). The second fundamental form h of H(x,θ) defined by

h(v, w) = 〈∇vw̃, ν〉,

where w̃ is a locally defined, smooth extension of w ∈ TyH(x,θ), is a symmetric bilinear form of TyH(x,θ),
whereas the shape operator S of H(x,θ) with respect to the unit normal ν is a self-adjoint endomorphism of
TyH(x,θ), defined by

Sv = −∇vν

(see [38] and [19, 1.10.8]). Then,

h(v, w) = 〈Sv, w〉 = −∇ dBθ(v, w), v, w ∈ TyH(x,θ).

The Hessian ∇ dBθ is positive semi-definite at any point, because Bθ is convex. Hence, the second funda-
mental form h is negative semi-definite and then the principal curvatures of any horosphere are nonpositive.
Note that ∇ dBθ(∇Bθ, w) = 0 for any vector w.

Example 2.1. Let (X, g) be the n-dimensional real hyperbolic space RHn of constant curvature −1. Take
the Poincaré unit ball model for it. Then the Busemann function on it normalized at the origin o has the
form

Bθ(x) = log |x− θ|2
1 − |x|2 , x ∈ X, θ ∈ ∂X ∼= Sn−1(1).
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3. Stable Jacobi tensor fields

Let γ : R → X be a geodesic on an Hadamard manifold (X, g). Let γ(t)⊥ = {v ∈ Tγ(t)X | v ⊥ γ′(t)} be
the space of tangent vectors orthogonal to γ at t.

Definition 3.1. Let Y (t), t ∈ (a, b) be a smooth bundle endomorphism of γ(t)⊥. We call Y (t) a Jacobi tensor
field along γ, if it satisfies

Y ′′(t) + R(t)Y (t) = O, (3)

where R(t) = Rt : v �→ R(v, γ′(t))γ′(t) is the Jacobi operator, the self-adjoint endomorphism of γ(t)⊥
defined by the Riemannian curvature tensor R;

R(u, v)w = [∇u,∇v]w −∇[u,v]w.

For Jacobi tensors refer to [15,18,21,26,27,37]. The existence and uniqueness of solution to (3) for a given
initial condition is guaranteed in t ∈ R.

Let Y (t) be a Jacobi tensor field along γ, t ∈ (a, b). Then, for any perpendicular parallel vector field
v = v(t) along γ, y(t) = Y (t)v(t) is a perpendicular Jacobi vector field along γ. When Y (t) is invertible
on (a, b), we set Y(t) = Y ′(t)Y (t)−1 as an endomorphism of γ(t)⊥ and find that Y(t) satisfies the Riccati
equation along γ, t ∈ (a, b);

Y ′(t) + Y(t)2 + R(t) = O. (4)

The Wronskian tensor field W(Y,Z)(t) is defined by

W(Y,Z)(t) = Y ′(t)∗Z(t) − Y (t)∗Z ′(t)

for endomorphisms Y (t) and Z(t) along γ. Here, the asterisk means the adjoint endomorphism. If, Y (t) and
Z(t) are Jacobi tensor fields along γ, then, W(Y,Z)(t) is seen to be parallel along γ. If Y (t) is invertible on
some interval, then W(Y, Y )(t) = O implies the self-adjointness of the tensor field Y(t) = Y ′(t)Y (t)−1.

We say that a Jacobi tensor field Y (t) is stable when (i) Y (t) vanishes nowhere, and (ii) limt→∞
tr(Y (t)∗Y (t)) = 0, or equivalently, there exists a constant C > 0 such that tr(Y (t)∗Y (t)) < C for any
t � 0. Note that, for any covariantly constant invertible endomorphism D = D(t), Y1(t) = Y (t)D(t) is
also a stable Jacobi tensor field. A Jacobi tensor field J(t), t ∈ R is called unstable, if J−(t) = J(−t) is
stable. The existence of stable (or unstable) Jacobi tensor field along any geodesic is guaranteed (see [18,37]
for example). We notice that any stable (or unstable) Jacobi tensor field is invertible. Moreover, it holds
W(Y, Y )(t) = W(U,U)(t) = O for a stable Jacobi tensor field Y and an unstable U .

Lemma 3.2. (See [18,21,37].) Let γ(t) be a geodesic converging to a θ ∈ ∂X and Y (t) a stable Jacobi tensor
field along γ(t), normalized as Y (0) = idγ(0)⊥ . For each t, let H(γ(t),θ) be a horosphere centered at θ, passing
through a point γ(t). Then, the shape operator S(t) of the H(γ(t),θ) at γ(t) with respect to the unit normal
ν = ∇Bθ (= −γ′(t)) is represented by S(t) = Y ′(t)Y −1(t), which fulfills

S ′(t) + S2(t) + R(t) = O.

Note 3.3. In terms of an unstable Jacobi tensor field U(t) along γ U ′(t)U−1(t) stands for the shape operator
of the horosphere H(γ(t),−θ) with respect to the unit normal vector field ν1 = ∇B(−θ) = γ′(t). Here −θ ∈ ∂X

is an ideal point at infinity given by γ(t) → −θ as t → −∞.



56 M. Itoh et al. / Differential Geometry and its Applications 35 (2014) 50–68
Now, let G(x, r) be a geodesic sphere centered at x and of radius r > 0 and γ(t) = expx tu, u ∈ SxX be a
geodesic. So, we have γ(t) ∈ G(x, t) at any t > 0. As the situation is similar to the horospheres, there exists
a unique Jacobi tensor field A(t), t ∈ R such that A(0) = O and A′(0) = idγ(0)⊥ . From the nonpositive
curvature assumption A(t) is invertible for t �= 0. Therefore, SG(t) = A′(t)A(t)−1, t > 0 gives the shape
operator of G(x, t) and satisfies the Riccati equation. See [16,48] for this. SG(t) is positive semi-definite
with respect to the outward normal field νG which is given by ∇r, since r(γ(t)) = d(x, γ(t)) = t for the
geodesic γ.

We will close this section by presenting the following example.

Example 3.4. Let (X, g) be an n-dimensional real hyperbolic space RHn of constant curvature −k2, k > 0.
Along any geodesic γ = γ(t) Y (t) = exp(−kt) id γ(t)⊥ gives a stable Jacobi tensor field and U(t) =
exp(kt) idγ(t)⊥ an unstable tensor field, which are both normalized at t = 0. The shape operator of a
horosphere H(γ(t),θ) centered at θ = [γ] is given by SH(t) = Y ′(t)Y −1(t) = −k idγ(t)⊥ so trSH(t) =
−(n − 1)k, whereas U ′(t)U−1(t) = k idγ(t)⊥ is an endomorphism of γ(t)⊥ giving the shape operator of a
horosphere H(γ(t),−θ), which plays a crucial role in proving Theorem 1.3 in Section 4.

On the other hand the Jacobi tensor field A(t) = sinh kt idγ(t)⊥ satisfies A(0) = O, A′(0) = idγ(0)⊥ . So
the shape operator of the geodesic sphere G(γ(0), t) is SG(t) = A′(t)A−1(t) = k cosh kt

sinh kt idγ(t)⊥ .

4. Asymptotically harmonic manifolds

Let (X, g) be an n-dimensional Hadamard manifold. Assume that (X, g) is asymptotically harmonic with
ΔBθ(x) ≡ −c for a constant c � 0.

An aim of this section is to verify Theorem 1.3. We will give an outline of its proof. The proof is a direct
consequence of an asymptotic formula of the mean curvature of a geodesic sphere. The detailed proof is
given in [33].

Let x ∈ X and θ ∈ ∂X. Take a geodesic γ = γ(t) = expx tu, u ∈ SxX such that γ(0) = x and [γ] = θ.
The volume V(r) of the geodesic ball B(x; r) = {y ∈ X | d(y, x) � r} is represented as V(r) =∫

B(x;r) dvg =
∫ r

0 A(t) dt in terms of the area A(r) of the geodesic sphere G(x, r).
If A′(r)

A(r) converges to c as r → ∞, the theorem is verified by applying l’Hospital’s rule to ρ(X) =
limr→∞

1
r logV(r) as

ρ(X) = lim
r→∞

V ′(r)
V(r) = lim

r→∞
A(r)∫ r

0 A(t) dt
= lim

r→∞
A′(r)
A(r) = c.

So, we will show limr→∞
A′(r)
A(r) = c.

Recall that the density function
√

det(gij) at the point γ(t) of dvg is represented by

J(u, t) tn−1 =
√

det
〈
yi(t), yj(t)

〉
,

where yi(t) is a Jacobi vector field along γ such that yi(0) = 0 and y′i(0) = ei(0), i = 1, . . . , n − 1 for the
parallel orthonormal frame field {ei(t)} so that

V(r) =
r∫

0

( ∫
u∈SxX

J(u, t)tn−1 du

)
dt

and
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A(r) =
∫

u∈SxX

J(u, r)rn−1 du.

Since each Jacobi field yi is expressed as yi(t) = A(t)ei(t) in terms of the Jacobi tensor field A(t) = Au(t)
along γ, defined in Section 3, we have

√
det〈yi(t), yj(t)〉 = detAu(t) so A(r) =

∫
u∈SxX

detAu(r) du and
hence A′(r) =

∫
u∈SxX

∂
∂r detAu(r) du is expressed as

A′(r) = (n− 1)
∫

SxX

μG(u, r) detAu(r) du,

where μG(u, r) is the mean curvature of G(x, r) at γ(r) = expx ru. This is immediate from the well known
formula, seen in [24, p. 143],

(
detAu(t)

)′ =
(
detAu(t)

)
× tr

(
A′

u(t)A−1
u (t)

)
.

From Lemma 4.2 below, we have μG(u, r) = c + εu(r), |εu(r)| < n−1
r so A′(r)

A(r) has a limit as r → ∞ and its
value is equal to c, as we observe

∣∣∣∣A
′(r)

A(r) − c

∣∣∣∣ =
∣∣∣∣
∫
SxX

(c + εu(r)) detAu(r) du∫
SxX

detAu(r) du
− c

∣∣∣∣ < n− 1
r

which shows Theorem 1.3.
We will investigate a relation between the shape operator of a geodesic sphere and the shape operator of

horospheres. Let SG(t) be the shape operator of the geodesic sphere Gt = G(x, t) at point γ(t), t > 0, where
γ(t) = expx tu is a geodesic, u ∈ SxX. Then, we have SG(t) = A′(t)A−1(t) in terms of the Jacobi tensor
field A(t) as stated in Section 3.

On the other hand, let Ht = H(γ(t),−θ) be a horosphere centered at −θ, passing through γ(t), t > 0,
where −θ is the asymptotical equivalence class [γ−] represented by the reversely oriented geodesic γ−(t) =
expx(−tu). Since Ht ⊥ γ′(t), we have γ(t)⊥ = Tγ(t)H = Tγ(t)G, that is, Gt contacts Ht at point γ(t), t > 0.
The shape operator of Ht with respect to the normal vector γ′(t) is SH(t) = U ′(t)U−1(t), where U = U(t),
t ∈ R, is the unstable Jacobi tensor field along γ with U(0) = idγ(0)⊥ .

Lemma 4.1. For any t > 0

SG(t) − SH(t) =
(
A∗)−1(t)U−1(t). (5)

Proof. Since the shape operators are self-adjoint, we have by using Wronskian

SG(t) − SH(t) =
(
A′(t)A−1(t)

)∗ − U ′(t)U−1(t)

=
(
A∗)−1(t)

{(
A′)∗(t)U(t) −A∗(t)U ′(t)

}
U−1(t)

=
(
A∗)−1(t)W(A,U)(t)U−1(t).

Here the Wronskian W(A,U)(t) is equal to idγ(t)⊥ , since W(A,U)(t) is a covariant constant tensor field
and W(A,U)(0) = (A′)∗(0)U(0) −A∗(0)U ′(0) = idγ(0)⊥ . �
Lemma 4.2. For any t > 0

∣∣μG(t) − μH(t)
∣∣ < n− 1

.

t
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Here μH(t) is equal to the constant c.

Proof. From (5) we have

μG(t) − μH(t) = tr
((
A∗)−1(t)U−1(t)

)
. (6)

We set the RHS of (6) as L(t). From Schwarz inequality on the trace inner product trCD∗ for endomor-
phisms C,D of γ(t)⊥, we have

L(t)2 � tr
((
A∗)−1(t)A−1(t)

)
· tr

((
U∗)−1(t)U−1(t)

)
.

We claim that for any t > 0 and any unit vector v ∈ γ(t)⊥

〈
A(t)v,A(t)v

〉
� t2〈v, v〉.

In fact, we compare the Hadamard manifold (X, g) with the Euclidean space (X, g) of the same dimension
where any perpendicular Jacobi field J(t) with J(0) = 0, |J ′(0)| = 1 along a straight line is just tv for a
unit perpendicular vector v. From Rauch comparison theorem (see [17]), we have

tr
((
A∗)−1(t)A−1(t)

)
=

n−1∑
i=1

〈
A−1(t)ei, A−1(t)ei

〉
�

n−1∑
i=1

1
t2

= n− 1
t2

, (7)

where {ei} is an orthonormal frame field along γ such that en = γ′(t).
We claim next that for t > 0

〈
U(t)v, U(t)v

〉
� 〈v, v〉

for any perpendicular vector v. This is a direct consequence of the convexity of Jacobi field over an Hadamard
manifold together with that U(t) is unstable. So,

tr
((
U∗)−1(t)U−1(t)

)
=

n−1∑
i=1

〈
U−1(t)ei, U−1(t)ei

〉
�

∑
i

〈ei, ei〉 = n− 1. (8)

From (7), (8) we obtain

L(t)2 � (n− 1)2

t2

and Lemma 4.2. �
Remark 4.3. Let (X, g) be an asymptotically harmonic Hadamard manifold.

(i) If (X, g) admits a smooth compact quotient, the volume entropy ρ(X) of X coincides with the
constant c. This is a direct consequence of the formula ρ(X) = − 1

C

∫
M

(
∫
∂X

ΔBθ(x) dνx) dvg, C =∫
M

νx(∂X) dvg, if (X, g) has a smooth compact quotient M (see [36,41,49]). Here νx is the Patterson–
Sullivan measure. However, our theorem (Theorem 1.3) can be applied to an Hadamard manifold
admitting no smooth quotient of finite volume.

(ii) If (X, g) is of negative curvature and admits a compact smooth quotient, then it turns out from [12,
9.18 Corollaire] to be a rank one symmetric space of noncompact type.
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(iii) Since ΔBθ ≡ −c is called a Poisson equation with constant c, regularity of Bθ can be recovered so that
every Busemann function is smooth (refer for the regularity problem to [11, p. 466] and [3, 3.54, p. 85]).
So, all horospheres of (X, g) are smooth hypersurfaces and moreover the stable and unstable foliations
in the unit tangent bundle SX are smooth, since their leaves W s, Wu are written by means of the
gradient field ∇Bθ, so we obtain directly the conclusion of Proposition in [22, p. 98]. When (X, g) is
further harmonic, every Busemann function on (X, g) is analytic (see [45]).

(iv) An Hadamard manifold which is harmonic is automatically asymptotically harmonic. Refer to [10,47].
A Damek–Ricci space is a typical example of harmonic Hadamard manifold, as remarked in [9]. See
also [2,30].

(v) The square norm of shape operator |S|2(y), y ∈ H(x,θ) is given by

|S|2(y) = −Ricg(∇Bθ,∇Bθ). (9)

So, (Xn, g), n � 3 is Einstein if and only if |S|2 is constant and this constant is common for all
horospheres.

(vi) When (Xn, g) is further Einstein, |SG|2(t) of the shape operator of a geodesic sphere of radius t has
an asymptotical representation

|SG|2(t) = − 1
n

scalg −
2(n− 1)

nt
scalg + O

(
1
t2

)
.

See [33] for the detail.

5. Rigidity theorems for asymptotically harmonic manifolds

We will prove in this section the rigidity theorems for an asymptotically harmonic Hadamard manifold.
We begin with a proof of Theorem 1.10.

Proof of Theorem 1.10. Since (X, g) is asymptotically harmonic, from Theorem 1.3 we have ΔBθ =
−tr(∇ dBθ) = −ρ for any θ ∈ ∂X, where ρ = ρ(X) is the volume entropy of (X, g).

The inequality ρ � n − 1 follows from (trT )2 � (n − 1) trT ∗T for an endomorphism T of an
(n−1)-dimensional real vector space. In fact, let γ = γ(t) be a geodesic and S(t) be the shape operator of the
horosphere H(γ(t),θ) along γ, [γ] = θ. Then, trS(t) = ΔBθ(γ(t)) = −ρ is constant. So, we have (trS ′)(t) = 0
and from the Riccati equation (4) trS2(t)+ trR(t) = 0, in other words, trS2(t) = −Ricg(γ′(t), γ′(t)). Since
from the assumption the Ricci curvature is equal to or less than n− 1, we have

ρ2 =
(
trS(t)

)2 � (n− 1) trS2(t) � (n− 1)2.

So ρ � n− 1.
When equality ρ = n − 1 holds, (trS(t))2 = (n − 1)trS2(t) = (n − 1)2. So, S(t) = −idγ′(t)⊥ for any t.

This means that the horosphere is totally umbilic of principal curvature −1 for any t. Since the geodesic γ

can be taken arbitrarily, the theorem follows from the following.

Theorem 5.1. (See [32, Theorem 1.1].) Let (X, g) be an n-dimensional Hadamard manifold. Then, (X, g) is
isometric to RHn if and only if there exists a constant k such that all horospheres of X are totally umbilic
with constant principal curvature k. �

Now we will give a proof of Theorem 1.5, the rigidity theorem of complex hyperbolic space. So, let
(X, g, J) be an asymtotically harmonic, nearly Kähler Hadamard manifold of real dimension n, and of Ricci
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curvature Ricg � −(n + 2). Let H(x,θ) be a horosphere centered at θ and passing through x. Let S be the
shape operator of H(x,θ).

We compare the shape operator S with the shape operator of a horosphere in a complex hyperbolic space.
So, consider the self-adjoint endomorphism of TyH(x,θ), y ∈ H(x,θ);

S − ρ

n
S0,

where S0 is a self-adjoint endomorphism defined by

S0 v = −
(
v + 〈v, ξ〉ξ

)
, v ∈ TyH(x,θ).

Taking trace of (S − ρ
nS0)2, we have

tr
(
S − ρ

n
S0

)2

= trS2 − 2ρ
n

trSS0 + ρ2

n2 trS2
0

= trS2 + 2ρ
n

(
trS + 〈Sξ, ξ〉

)
+ ρ2

n2 (n + 2).

Since tr(S − ρ
nS0)2 � 0 and trS = −ρ, we have

trS2 � −2ρ
n

(
−ρ + 〈Sξ, ξ〉

)
− ρ2

n2 (n + 2) = ρ2(n− 2)
n2 − 2ρ

n
a,

where a = h(ξ, ξ) = 〈Sξ, ξ〉. We apply (9) and the Ricci curvature assumption to have

ρ2 − 2an
n− 2ρ−

n2(n + 2)
n− 2 � 0.

The assumption a � −2 implies

0 � ρ2 + 4n
n− 2ρ−

n2(n + 2)
n− 2 = (ρ− n)

(
ρ + n(n + 2)

n− 2

)
.

It is concluded that ρ � n, since ρ is nonpositive.
Now, we consider the equality case; ρ = n. Equality holds if and only if S = ρ

nS0 = S0, which implies
that the vector ξ is a principal direction of principal curvature −2. Therefore, applying the following, we
find that (X, g, J) is biholomorphically isometric to CHm, n = 2m, of constant holomorphic curvature −4.

Theorem 5.2. (See [32, Theorem 1.3].) Let (X, g, J) be a 2m-dimensional nearly Kähler Hadamard manifold.
Assume that for every horosphere H(x,θ) of X the tangent vector ξ = J∇Bθ at y ∈ H(x,θ) is a principal
direction whose principal curvature k = k(x,θ)(y) (�= 0) is constant in y and is independent of the choice
of x ∈ X and θ ∈ ∂X. Then, (X, g, J) must be a complex hyperbolic space CHm of constant holomorphic
curvature −k2.

Remark 5.3. Theorem 1.10, the rigidity theorem of real hyperbolic space, can be similarly obtained by
setting S0 = − ρ

n−1 id.
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6. Sturm’s argument and a proof of Theorem 1.8

The goal of this section is to prove Theorem 1.8, a characterization of CHm in terms of holomorphic
curvature boundedness.

For this we will show the following lemma.

Lemma 6.1. Let s(t), −∞ < t < ∞ be a C1-solution of

s′(t) + s2(t) − k2 � 0, (10)

where k is a positive constant. Then, s(t) � −k for all t.

Proof. Assume that there exists a t0 such that s(t0) < −k and show that this leads to a contradiction.
Set s(t0) = −(k + ε), ε > 0 and let k1 = k + ε

2 so 0 < k1 < k + ε. Define a function

σ(t) = k1 coth(k1t− �),

where � is an arbitrary real number. Then, σ(t) satisfies

σ′(t) + σ2(t) − k2
1 = 0. (11)

Fix an � such that σ(t0) = s(t0). In fact, if we choose an � as

� =
(
k + ε

2

)
t0 −

1
2 log ε

4k + 3ε ,

then σ(t0) = s(t0). Remark that if we let ε > 0 be sufficiently small, then the � must be large. Subtract
(11) from (10). Then we have

s′(t) − σ′(t) � σ2(t) − s2(t) + k2 − k2
1

from which it follows at t = t0

s′(t0) − σ′(t0) � k2 − k2
1 < 0,

since σ(t0) = s(t0). Thus, the function s(t) − σ(t) is decreasing in t at t0, and consequently we obtain
s(t) � σ(t) for t0 � t � t0 + δ for a positive number δ. Therefore, by applying Sturm’s argument given
in [26,27], we conclude that s(t) � σ(t) for all t � t0. However, limt→1/k1−0 σ(t) = −∞, while s(t) is well
defined at t = 1

k1
. This is a contradiction. So, s(t) � −k for all t. �

The following is a generalization of the above lemma.

Lemma 6.2. If s(t), −∞ < t < ∞ is a C1 function which satisfies

s′(t) + 1
K

s2(t) −Kk2 � 0

for positive constants k, K, then s(t) � −kK for all t.
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This is derived by comparing s(t) with the function σ(t) = kK coth(kt− �).
We apply Lemma 6.1 to the proof of Theorem 1.8. Let (X2m, g, J) be a nearly Kähler Hadamard manifold

of dimX = 2m (� 4), whose holomorphic curvature is equal or greater than −4.
Let γ(t) be a geodesic such that [γ] = θ and S(t) be the shape operator of H(γ(t),θ) at a point γ(t) with

respect to the unit normal vector ν = ∇Bθ = −γ′(t).
Set s(t) = 〈S(t) ξ(t), ξ(t)〉. Here ξ(t) = Jν = −Jγ′(t) is a unit vector field along γ which is parallel, since

(X, g, J) is nearly Kähler. So, s′(t) = 〈S ′(t)ξ(t), ξ(t)〉. Since S(t) satisfies the Riccati equation (4),

s′(t) +
〈
S(t)ξ(t),S(t)ξ(t)

〉
+

〈
Rtξ(t), ξ(t)

〉
= 0,

from which

s′(t) + s2(t) − 4 � 0,

since 〈Rtξ(t), ξ(t)〉 � −4 from the holomorphic curvature assumption, and also 〈S(t)ξ(t),S(t)ξ(t)〉 � s2(t),
which is from the decomposition of S(t)ξ(t) with respect to ξ(t) as S(t)ξ(t) = s(t)ξ(t) + ξ⊥(t).

We are then able to apply Lemma 6.1 with k = 2. Since s(t) � −2 from the assumption, we conclude
that s(t) ≡ −2 and hence s′(t) = 0. Therefore 〈S(t)ξ(t),S(t)ξ(t)〉 = −〈Rtξ(t), ξ(t)〉 � 4. On the other hand,
from the decomposition 〈S(t) ξ(t),S(t)ξ(t)〉 = s2(t) + |ξ⊥(t)|2 = 4 + |ξ⊥(t)|2. Thus, ξ⊥(t) must be zero for
any t which means S(t)ξ(t) = −2ξ(t) for any t. Theorem 1.8 follows, then, from Theorem 5.2.

7. Quaternionic Kähler Hadamard manifolds and the quaternionic curvature identities

In final section we will verify Theorems 1.7 and 1.9. So, let (X, g, V ) be a quaternionic Kähler Hadamard
manifold.

From (ii) of Definition 1.7 there exist on (X, g, V ) local one-forms α1, α2 and α3 such that

∇uJ1 = α3(u)J2 − α2(u)J3,

∇uJ2 = −α3(u)J1 + α1(u)J3,

∇uJ3 = α2(u)J1 − α1(u)J2, (12)

so that the Riemannian curvature tensor R satisfies

[
R(u, v), J1

]
= β3(u, v)J2 − β2(u, v)J3,[

R(u, v), J2
]

= −β3(u, v)J1 + β1(u, v)J3,[
R(u, v), J3

]
= β2(u, v)J1 − β1(u, v)J2, (13)

where local two-forms βi, i = 1, 2, 3 are given by βi = dαi + αj ∧ αk with respect to a cyclic permutation
{i, j, k} of {1, 2, 3}.

Proposition 7.1. (See [39].) A quaternionic Kähler manifold (X4m, g, V ) satisfies

〈
R(u, v)w, J1w

〉
+

〈
R(u, v)J2w, J3w

〉
= β1(u, v)|w|2,〈

R(u, v)w, J2w
〉

+
〈
R(u, v)J3w, J1w

〉
= β2(u, v)|w|2,〈

R(u, v)w, J3w
〉

+
〈
R(u, v)J1w, J2w

〉
= β3(u, v)|w|2. (14)
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Furthermore, (X4m, g, V ), m � 2, is Einstein. So, there exists a constant δ such that

Ricg = 4(m + 2)δg

with constant scalar curvature scalg = 16m(m + 2)δ. Here, the 2-forms βi satisfy

βi(u, Jiv) = − 1
4m + 2Ricg(u, v) = −4δg(u, v).

Proposition 7.2. (See [39].) For a quaternionic Kähler manifold (X4m, g, V ), m � 2, one has the following
curvature identities;

(i) For any u ∈ TX,

〈
R(J1u, u)u, J1u

〉
+

〈
R(J2u, u)u, J2u

〉
+

〈
R(J3u, u)u, J3u

〉
= 12δ|u|4.

(ii) For any tangent vectors u, v satisfying 〈v, u〉 = 〈v, J1u〉 = 〈v, J2u〉 = 〈v, J3u〉 = 0,

〈
R(v, u)u, v

〉
+
〈
R(J1v, u)u, J1v

〉
+

〈
R(J2v, u)u, J2v

〉
+
〈
R(J3v, u)u, J3v

〉
= 4δ|u|2|v|2.

Proof. For (i) we substitute v = Jiu in the i-th equality in (14), i = 1, 2, 3. Then we have

〈
R(u, J1u)u, J1u

〉
+
〈
R(u, J1u)J2u, J3u

〉
= β1(u, J1u)|u|2,〈

R(u, J2u)u, J2u
〉

+
〈
R(u, J2u)J3u, J1u

〉
= β2(u, J2u)|u|2,〈

R(u, J3u)u, J3u
〉

+
〈
R(u, J3u)J1u, J2u

〉
= β3(u, J3u)|u|2.

By summing up the above and applying the first Bianchi identity to the summation of the second terms,
we obtain the required equality in view of βi(u, Jiu) = −4δ|u|2.

For (ii) we observe from the assumption and the first formula of (13) that [R(·, ·), J1]v is perpendicular
to the vectors u, J1u and then see

〈
R(u, J1v)J1v, u

〉
= −

〈
R(u, J1v)v, J1u

〉
, (15)〈

R(v, u)J1v, J1u
〉

=
〈
R(v, u)v, u

〉
. (16)

The RHS of (15) is from the first Bianchi identity reduced to

−
(
−
〈
R(J1v, v)u, J1u

〉
−
〈
R(v, u)J1v, J1u

〉)

and then, from (16), to

〈
R(J1v, v)u, J1u

〉
+
〈
R(v, u)v, u

〉
.

Therefore we have

〈
R(u, J1v)J1v, u

〉
+
〈
R(u, v)v, u

〉
= −

〈
R(v, J1v)u, J1u

〉
.

Substitute J2v into v in the above to have

〈
R(u, J3v)J3v, u

〉
+
〈
R(u, J2v)J2v, u

〉
= −

〈
R(J2v, J3v)u, J1u

〉
.
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So, summing up these equalities we get (ii), since

〈
R(u, v)v, u

〉
+

3∑
i=1

〈
R(u, Jiv)Jiv, u

〉
= −

〈
R(v, J1v)u, J1u

〉
−
〈
R(J2v, J3v)u, J1u

〉

= −β1(u, J1u)|v|2 = 4δ|u|2|v|2. �
Let γ = γ(t) be a geodesic in a quaternionic Kähler manifold (X, g, V ). Then we have a notion of

adapted orthonormal frame along γ, namely an orthonormal frame {ei = ei(t), i = 1, . . . , 4m} satisfying
the following; e1(t) = γ′(t) with e2(t) = J1e1(t), e3(t) = J2e1(t), e4(t) = J3e1(t) and further e4j+1(t),
j = 1, . . . ,m− 1 are parallel such that e4j+2, e4j+3, e4j+4 are given by e4j+2 = J1e4j+1, e4j+3 = J2e4j+1,
e4j+4 = J3e4j+1. We set linear subspaces E0 = E0(t), Ej = Ej(t) ⊂ γ⊥(t) by

E0(t) = span{e2, e3, e4},

Ej(t) = span{e4j+1, e4j+2, e4j+3, e4j+4}.

Then, E0 ⊕ E1 ⊕ · · · ⊕Em−1 = γ⊥(t) is the orthogonal direct sum of γ⊥(t).
We notice that each Ej , j = 1, . . . ,m − 1, is invariant by the quaternionic structure and also each

Ej , j = 0, . . . ,m − 1, by the covariant derivative along γ. An adapted orthonormal frame can always be
constructive by an inductive argument. Notice also a choice of an adapted orthonormal frame depends on
a local choice of quaternionic structure Ji, i = 1, 2, 3, whereas each Ek, k = 1, . . . ,m− 1, is independent of
local quaternionic structure.

Let H(γ(t),θ) be a horosphere centered at θ = [γ] and passing through the point γ(t) so we have a foliation
{H(γ(t),θ) | −∞ < t < ∞} of X. The unit vector field ν = ∇Bθ is a normal to H(γ(t),θ) at the point γ(t).

Associated with the shape operator S = S(t) of H(γ(t),θ) we define functions s(t) and sj = sj(t), j =
1, . . . ,m− 1, respectively along γ by

s(t) =
4∑

k=2

〈Sek, ek〉 =
3∑

i=1
〈SJie1, Jie1〉

and

sj(t) =
4∑

k=1

〈Se4j+k, e4j+k〉

= 〈Se4j+1, e4j+1〉 +
3∑

i=1
〈SJie4j+1, Jie4j+1〉

for j = 1, . . . ,m− 1.

Notice 7.3. We have the following inequality

1
3s

2(t) �
4∑

j=2
〈Sej ,Sej〉 =

3∑
i=1

〈SJie1,SJie1〉 (17)

and equality holds if and only if each of ej , j = 2, 3, 4 is an eigenvector of S with the same eigenvalue.
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Furthermore

1
4
s2
j (t) �

4∑
k=1

〈Se4j+k,Se4j+k〉

= 〈Se4j+1,Se4j+1〉 +
3∑

i=1
〈SJie4j+1,SJie4j+1〉

and equality holds if and only if each of e4j+k, k = 1, 2, 3, 4 is an eigenvector of S with the same eigenvalue.

Lemma 7.4. s(t) and sj(t), j = 1, . . . ,m− 1 satisfy the following for all t;

s′(t) + 1
3s

2(t) + 12δ � 0, (18)

s′j(t) + 1
4s

2
j (t) + 4δ � 0. (19)

Proof. We differentiate, with respect to t, the function

s(t) =
3∑

i=1
〈SJie1, Jie1〉.

Then, from (12) and the fact that the shape operator is self-adjoint we obtain

s′(t) =
3∑

i=1

〈
S ′Jie1, Jie1

〉
. (20)

In fact, we can write 〈SJie1, Jie1〉′ as 〈S ′Jie1, Jie1〉 + 2〈SJ ′
ie1, Jie1〉 to have

s′(t) =
3∑

i=1

〈
S ′Jie1, Jie1

〉
+ 2

3∑
i=1

〈
SJ ′

ie1, Jie1
〉
.

From (12) the second term reduces to zero so we have (20). Then, from the Riccati equation (4) we have

0 = s′(t) +
3∑

i=1
〈SJie1,SJie1〉 +

3∑
i=1

〈RtJie1, Jie1〉

= s′(t) +
3∑

i=1
〈SJie1,SJie1〉 + 12δ. (21)

With the aid of the inequality (17) in Notice 7.3 we have the first inequality of Lemma 7.4.
Similarly, we have

s′j(t) =
〈
S ′e4j+1, e4j+1

〉
+

〈
S ′J1e4j+1, J1e4j+1

〉
+
〈
S ′J2e4j+1, J2e4j+1

〉
+
〈
S ′J3e4j+1, J3e4j+1

〉

to get the second inequality of Lemma 7.4.
We can then apply Lemma 6.2 to Lemma 7.4 to conclude for all t

s(t) � −6
√
−δ, (22)
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and

sj(t) � −4
√
−δ. (23)

In fact, we can set for s(t) of Lemma 6.2 K = 3 and k > 0 such that 12δ = −Kk2, i.e., k = 2
√
−δ

so that −kK = −6
√
−δ, and for sj(t) of Lemma 6.2 set K = 4 and k > 0 such that 4δ = −Kk2 so

−kK = −4
√
−δ. �

Now, we will give a proof to Theorem 1.7.
Since (X, g, V ) is asymptotically harmonic, the trace of S is equal to −ρ(X) so that it is equal to

−2(2m + 1). On the other hand, from (22) and (23), we find that

trS = s(t) +
m−1∑
j=1

sj(t)

≥
{
−6 + (m− 1)(−4)

}√
−δ = −2(2m + 1)

√
−δ. (24)

So, we have 1 �
√
−δ and hence δ � −1.

However, δ � −1 from the scalar curvature assumption scalg = 12m(m + 2)δ � −12m(m + 2). So δ

must be −1. Therefore equality holds in the inequality (24) so s(t) and sj(t) must satisfy s(t) ≡ −6 and
sj(t) ≡ −4, j = 1, . . . ,m− 1. Then, from (21) we have

3∑
i=1

〈SJie1,SJie1〉 = 12 = 1
3s

2(t) (25)

on any horosphere H(γ(t),θ). Hence, from Notice 7.3, we find that J1e1, J2e1 and J3e1 are eigenvectors of S
with eigenvalue −2, that is, each is a principal direction of principal curvature −2. As this statement holds
for an arbitrary θ ∈ ∂X, the proof is immediate from the following.

Theorem 7.5. (See [32, Theorem 1.3].) Let (X, g, V ) be a 4m (� 8)-dimensional quaternionic Kähler
Hadamard manifold. Assume that for every horosphere H(x,θ) of X the tangent vector ξi = Ji∇Bθ, i = 1, 2, 3
is a principal direction whose principal curvature k = k(y) is negative constant in y ∈ H(x,θ) and further
is independent of the choice of x and θ. Then, (X, g, V ) must be a quaternionic hyperbolic space HHm of
constant holomorphic curvature −k2.

As a direct consequence of Theorem 1.7 we have the following corollary.

Corollary 7.6. Let (X4m, g, V ), m � 2 be a quaternionic Kähler Hadamard manifold with scalg � −16m ×
(m+ 2). If the bottom λ1(X) of spectrum of the Laplacian satisfies λ1(X) � (2m+ 1)2, then (X4m, g, V ) is
isometric to HHm of constant holomorphic curvature −4.

Here, for a complete Riemannian manifold X the bottom λ1(X) of the spectrum of the Laplacian is
defined

λ1(X) = inf
f∈C∞

o (X)

∫
X
|df |2 dvg∫

X
f2 dvg

.

See [40] for this.
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In fact, Corollary 7.6 follows from the above theorem, since λ1(X) � ρ2(X)
4 holds for any Hadamard

manifold X by the result in [40] and then from [39] ρ = ρ(X) � 4m + 2 so that from the assumption
λ1(X) � (2m + 1)2 one has equality ρ(X) = 4m + 2.

We will now give a proof to Theorem 1.9 as follows. From the argument in the proof to Theorem 1.7, it
is enough to show Eq. (25).

From the assumption of Theorem 1.9 we have scalg = 16m(m + 2)δ � −16m(m + 2) and then δ � −1.
Hence, from (18) we obtain

s′(t) + 1
3s

2(t) − 12 � 0. (26)

Now we apply Lemma 6.2 with K = 3, k = 2 to the above to conclude that s(t) � −6 so that s(t) ≡ −6
holds in all t from the assumption s(t) � −6.

Thus, from (21) we have

3∑
i=1

〈SJie1,SJie1〉 = −12δ � 12 = 1
3s

2(t)

from which, together with (17), we obtain (25).
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