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In this paper, first we introduce the full expression of the Ricci tensor of a real hypersurface
M in complex two-plane Grassmannians G2(Cm+2) from the equation of Gauss. Next,
we give a new characterization of real hypersurfaces of type (A) in complex two-plane
Grassamnnians with a vanishing Lie derivative of the Ricci tensor S in the direction of the
Reeb vector field ξ , that is, an ξ -invariant Ricci tensor.
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0. Introduction

In the geometry of real hypersurfaces in complex or quaternionic space forms it can be easily checked that there do not
exist any real hypersurfaces with parallel shape operator A by virtue of Codazzi’s equation.

However, in such kinds of space forms the proof of non-existence is not so easy if we consider a real hypersurface with
a parallel Ricci tensor, that is, ∇S = 0. In a class of Hopf hypersurfaces, Kimura [1] has asserted that there do not exist any
real hypersurfaces in a complex projective space CPm with a parallel Ricci tensor. Moreover, he has given a classification of
Hopf hypersurfaces in CPm with commuting Ricci tensor, that is Sφ = φS (see [2]) and showed that M is locally congruent
to one of real hypersurfaces of type A1, A2, B, C , D and E, that is, respectively, a tube of certain radius r over a totally geodesic
CPk, a complex quadric Qm−1, CP1

×CP
n−1
2 , a complex two-plane Grassmannian G2(C5) and an Hermitian symmetric space

SO(10)/U(5).
On the other hand, in a complex hyperbolic space CHm Ki and the present author [3] have given a complete classification

of Hopf hypersurfaces in CHm with a commuting Ricci tensor and proved that M is locally congruent to a horosphere, a
geodesic hypersphere, a tube over a tally geodesic CHk in CHm.

In a quaternionic projective spaceHPm Pérez [4] has considered the notion of Sφi = φiS, i = 1, 2, 3, for real hypersurfaces
in HPm and classified that M is locally congruent to type A1, or type A2, that is, a tube over HPk with radius 0 < r < π

4 .
Moreover, in [4] he has also classified that real hypersurfaces in HPm with a parallel Ricci tensor are locally congruent to an
open subset of a geodesic hypersphere whose radius r satisfies cot2 r =

1
2m .
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Now let us denote by G2(Cm+2) the set of all complex 2-dimensional linear subspaces in Cm+2. Then the formula
concerned with the Ricci tensor mentioned above is not so simple if we consider a real hypersurface in complex two-plane
Grassmannians G2(Cm+2) (see [5–10]).

In this paper we study an analogous question related to the Ricci tensor S of real hypersurfaces in complex two-
plane Grassmannians G2(Cm+2). The ambient space G2(Cm+2) has a remarkable geometric structure. It becomes a compact
irreducible Riemannian symmetric space equipped with both a Kähler structure J and a quaternionic Kähler structure J not
containing J (see [11]).

In other words, G2(Cm+2) is the unique compact, irreducible, Kähler, quaternionic Kähler manifold which is not a
hyperkähler manifold. So, we have considered two natural geometric conditions that the 1-dimensional distribution [ξ ] =

Span {ξ} and the 3-dimensional distribution D⊥
= Span {ξ1, ξ2, ξ3} for real hypersurfaces in G2(Cm+2) are invariant under

the shape operator. By using such two conditions and the results in [12], Berndt and the present author [5] proved the
following:

Theorem A. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3. Then both [ξ ] and D⊥ are invariant under the shape
operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2), or
(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic HPn in G2(Cm+2).

If the structure vector field ξ of M in G2(Cm+2) is invariant under the shape operator, that is, Aξ = αξ , α = g(Aξ, ξ),
M is said to be a Hopf real hypersurface. In such a case, the integral curves of the structure vector field ξ are geodesics (see
[6]). Moreover, the flow generated by the integral curves of the structure vector field ξ for Hopf hypersurfaces in G2(Cm+2)
is said to be a geodesic Reeb flow. Moreover, we say that the Reeb vector field is Killing, that is, Lξg = 0, where Lξ denotes
the Lie derivative along the direction of the Reeb vector field ξ and g the Riemannian metric induced from G2(Cm+2). Then
this is equivalent to the fact that the structure tensor φ commutes with the shape operator A ofM in G2(Cm+2).

When the Ricci tensor S of M in G2(Cm+2) commutes with the structure tensor φ, we say that M has a commuting Ricci
tensor.

In the proof of TheoremAwehave proved that the 1-dimensional distribution [ξ ] is contained in either the 3-dimensional
distributionD⊥ or in the orthogonal complementD such that TxM = D⊕D⊥. The case (A) in TheoremA is just the case that
the 1-dimensional distribution [ξ ] belongs to the distribution D⊥. Of course, the Reeb vector field ξ of real hypersurfaces
of type (A) is known to be Killing (see [6]). Then the commuting structure tensor implies the Ricci commuting. Moreover,
we have given a characterization of type (A) in Theorem A in terms of the Lie derivative of the shape operator A along the
direction of the Reeb vector field ξ , that is,LξA = 0 (see [9]). Then it can be easily checked that these kinds of hypersurfaces
naturally satisfy Lξ S = 0 for the Ricci tensor of M in G2(Cm+2). When the Ricci tensor satisfies the formula Lξ S = 0, it is
said to be a ξ -invariant Ricci tensor.

On the other hand, it is not difficult to check that the Ricci tensor S of real hypersurfaces of type (B) mentioned in
Theorem A can not commute with the structure tensor φ and can not parallel. From such a view point it must be a natural
problem to know ceratin hypersurfaces inG2(Cm+2)with a commuting Ricci tensor. Along this directionwewant to introduce
a theorem due to the present author [13] as follows:

Theorem B. Let M be a Hopf real hypersurface in G2(Cm+2), m ≥ 3, with commuting Ricci tensor. Then M is congruent to a tube
of radius r over a totally geodesic G2(Cm+1) in G2(Cm+2).

Motivated by such a theorem, the main result of this paper is to give a characterization of real hypersurfaces of type (A)
in G2(Cm+2) with a vanishing Lie derivative of the Ricci tensor S along the direction of the Reeb vector field ξ , Lξ S = 0, that
is, the ξ -invariant Ricci tensor. Then we assert the following

Theorem. Let M be a Hopf real hypersurface in G2(Cm+2), m ≥ 3, with ξ -invariant Ricci tensor. Then M is congruent to a tube
of radius r over a totally geodesic G2(Cm+1) in G2(Cm+2).

In Section 1 we recall Riemannian geometry of complex two-plane Grassmannians G2(Cm+2). In Section 2 we will show
some fundamental properties of real hypersurfaces in G2(Cm+2). In Section 3 the formulas for the Ricci tensor S and its Lie
derivative Lξ S along the direction of the Reeb vector field ξ will be shown explicitly. Also in this section we will give a
complete proof of the main theorem.

1. Riemannian geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2), for details we refer to [11,5,6]. By G2(Cm+2) we denote the
set of all complex two-dimensional linear subspaces in Cm+2. The special unitary group G = SU(m + 2) acts transitively on
G2(Cm+2) with stabilizer isomorphic to K = S(U(2) × U(m)) ⊂ G. Then G2(Cm+2) can be identified with the homogeneous
space G/K , which we equip with the unique analytic structure for which the natural action of G on G2(Cm+2) becomes
analytic. Denote by g and k the Lie algebra of G and K , respectively, and by m the orthogonal complement of k in g with
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respect to the Cartan–Killing form B of g. Then g = k⊕m is an Ad(K)-invariant reductive decomposition of g. We put o = eK
and identify ToG2(Cm+2) with m in the usual manner. Since B is negative definite on g, its negative restricted to m × m

yields a positive definite inner product on m. By Ad(K)-invariance of B this inner product can be extended to a G-invariant
Riemannian metric g on G2(Cm+2). In this way G2(Cm+2) becomes a Riemannian homogeneous space, even a Riemannian
symmetric space. For computational reasons we normalize g such that the maximal sectional curvature of (G2(Cm+2), g) is
eight.

When m = 1, G2(C3) is isometric to the two-dimensional complex projective space CP2 with constant holomorphic
sectional curvature eight.

Whenm = 2,we note that the isomorphism Spin(6) ≃ SU(4) yields an isometry betweenG2(C4) and the real Grassmann
manifold G+

2 (R6) of oriented two-dimensional linear subspaces in R6. In this paper, we will assumem ≥ 3.
The Lie algebra k has the direct sum decomposition k = su(m) ⊕ su(2) ⊕ R, where R is the center of k. Viewing k as the

holonomy algebra ofG2(Cm+2), the centerR induces a Kähler structure J and the su(2)-part a quaternionic Kähler structure J

on G2(Cm+2). If Jν is any almost Hermitian structure in J, then JJν = Jν J , and JJν is a symmetric endomorphismwith (JJν)2 = I
and tr(JJν) = 0. This fact will be used in the next sections.

A canonical local basis {J1, J2, J3} of J consists of three local almost Hermitian structures Jν in J such that Jν Jν+1 = Jν+2 =

−Jν+1Jν , where the index is taken as module three. Since J is parallel with respect to the Riemannian connection ∇̄ of
(G2(Cm+2), g), there exist a canonical local basis {J1, J2, J3} of J and three local 1-forms q1, q2, q3 such that

∇̄X Jν = qν+2(X)Jν+1 − qν+1(X)Jν+2 (1.1)

for all vector fields X on G2(Cm+2).
Moreover, in [11] it is known that the Riemannian curvature tensor R̄ of G2(Cm+2) is locally given by

R̄(X, Y )Z = g(Y , Z)X − g(X, Z)Y + g(JY , Z)JX − g(JX, Z)JY − 2g(JX, Y )JZ

+

3−
ν=1

{g(JνY , Z)JνX − g(JνX, Z)JνY − 2g(JνX, Y )JνZ} +

3−
ν=1

{g(Jν JY , Z)Jν JX − g(Jν JX, Z)Jν JY }, (1.2)

where {J1, J2, J3} is any canonical local basis of J, X, Y and Z , any vector fields on G2(Cm+2).

2. Some fundamental formulas for real hypersurfaces in G2(Cm+2)

In this sectionwe derive some fundamental formulas whichwill be used in the proof of ourmain theorem. LetM be a real
hypersurface in G2(Cm+2), that is, a submanifold in G2(Cm+2) with real codimension one. The induced Riemannian metric
onM will also be denoted by g , and ∇ denotes the Riemannian connection of (M, g).

Now let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N (2.1)

for any tangent vector X of a real hypersurfaceM in G2(Cm+2), where N denotes a unit normal vector field ofM in G2(Cm+2).
From the Kähler structure J of G2(Cm+2) there exists an almost contact metric structure (φ, ξ, η, g) induced onM in such

a way that

φ2X = −X + η(X)ξ , η(ξ) = 1, φξ = 0, η(X) = g(X, ξ) (2.2)

for any vector field X onM .
On the other hand, from the quaternionic Kähler structure {J1, J2, J3} of J and the expression of (2.1) we have an almost

contactmetric 3-structure (φν, ξν, ην, g), ν = 1, 2, 3 onM . Moreover, from the commuting property of Jν J = JJν , ν = 1, 2, 3,
in Section 1 and (2.1), the relation between these two contact metric structures (φ, ξ, η, g) and (φν, ξν, ην, g), ν = 1, 2, 3
can be given by

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,
φξν = φνξ, ην(φX) = η(φνX),
φνφν+1X = φν+2X + ην+1(X)ξν,
φν+1φνX = −φν+2X + ην(X)ξν+1

(2.3)

for any vector field X onM .
Using the above expressions (1.2) and (2.1) for the curvature tensor R̄, the Gauss and the Codazzi equations are

respectively given by

R(X, Y )Z = g(Y , Z)X − g(X, Z)Y + g(φY , Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ

+

3−
ν=1

{g(φνY , Z)φνX − g(φνX, Z)φνY − 2g(φνX, Y )φνZ}
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+

3−
ν=1

{g(φνφY , Z)φνφX − g(φνφX, Z)φνφY } −

3−
ν=1

{η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY }

−

3−
ν=1

{η(X)g(φνφY , Z) − η(Y )g(φνφX, Z)}ξν + g(AY , Z)AX − g(AX, Z)AY

and

(∇XA)Y − (∇YA)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ +

3−
ν=1

{ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν}

+

3−
ν=1

{ην(φX)φνφY − ην(φY )φνφX} +

3−
ν=1

{η(X)ην(φY ) − η(Y )ην(φX)}ξν ,

where R denotes the curvature tensor and A the shape operator of a real hypersurfaceM in G2(Cm+2).
Then from the formulas (1.1) and (2.1), together with (2.2) and (2.3), the Kähler structure and the quaternionic Kähler

structure of G2(Cm+2) give the following

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ , ∇Xξ = φAX, (2.4)
∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX, (2.5)

(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX − g(AX, Y )ξν . (2.6)

Summing up these formulas, we find the following

∇X (φνξ) = ∇X (φξν)

= (∇Xφ)ξν + φ(∇Xξν)

= qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφAX − g(AX, ξ)ξν + η(ξν)AX . (2.7)

Moreover, from JJν = Jν J , ν = 1, 2, 3, it follows that

φφνX = φνφX + ην(X)ξ − η(X)ξν . (2.8)

3. Proof of main theorem

In this section, we consider a Hopf real hypersurface in G2(Cm+2)with ξ -invariant Ricci tensor, that is,Lξ S = 0, along the
direction of the Reeb vector field ξ . Before giving the proof of our main theorem, let us check ‘‘what kind of hypersurfaces
given in Theorem A satisfy the formula Lξ S = 0’’.

In other words, it will be an interesting problem to knowwhether there exists a kind of hypersurfaceM in G2(Cm+2)with
a Lie vanishing Ricci tensor. Then the ξ -invariant Ricci tensor Lξ S = 0 gives

(Lξ S)X = Lξ (SX) − SLξX
= ∇ξ (SX) − ∇SXξ − S(∇ξX − ∇Xξ)

= (∇ξ S)X − ∇SXξ + S∇Xξ

= (∇ξ S)X − φASX + SφAX
= 0

for any vector field X on M . Then the assumption Lξ S = 0 holds if and only if (∇ξ S)X = φASX − SφAX . In this section, we
will show that only a tube of certain radius r over a totally geodesic G2(Cm+1) in G2(Cm+2) satisfies the formula Lξ S = 0.

Now let us contract Y and Z in the equation of Gauss in Section 2. Then the Ricci tensor S of a real hypersurface M in
G2(Cm+2) is given by

SX =

4m−1−
i=1

R(X, ei)ei

= (4m + 10)X − 3η(X)ξ − 3
3−

ν=1

ην(X)ξν +

3−
ν=1

{(Trφνφ)φνφX − (φνφ)2X}

−

3−
ν=1

{ην(ξ)φνφX − η(X)φνφξν} −

3−
ν=1

{(Tr φνφ)η(X) − η(φνφX)}ξν + hAX − A2X, (3.1)



812 Y.J. Suh / Journal of Geometry and Physics 61 (2011) 808–814

where h denotes the trace of the shape operator A of M in G2(Cm+2). From the formula JJν = Jν J , Tr JJν = 0, ν = 1, 2, 3, we
calculate the following for any basis {e1, . . . , e4m−1,N} of the tangent space of G2(Cm+2)

0 = Tr JJν

=

4m−1−
k=1

g(JJνek, ek) + g(JJνN,N)

= Trφφν − ην(ξ) − g(JνN, JN)

= Trφφν − 2ην(ξ) (3.2)

and (2.8) gives that

(φνφ)2X = φνφ(φφνX − ην(X)ξ + η(X)ξν)

= φν(−φνX + η(φνX)ξ) + η(X)φν
2ξ

= X − ην(X)ξν + η(φνX)φνξ + η(X){−ξ + ην(ξ)ξ}. (3.3)

Substituting (3.2) and (3.3) into (3.1), we have

SX = (4m + 10)X − 3η(X)ξ − 3
3−

ν=1

ην(X)ξν +

3−
ν=1

{ην(ξ)φνφX − X − η(φνX)φνξ − η(X)ην(ξ)ξ} + hAX − A2X

= (4m + 7)X − 3η(X)ξ − 3
3−

ν=1

ην(X)ξν +

3−
ν=1

{ην(ξ)φνφX − η(φνX)φνξ − η(X)ην(ξ)ξν} + hAX − A2X . (3.4)

Now in order to compute the commuting Ricci tensor, we calculate the following

SφX = (4m + 7)φX − 3
3−

ν=1

ην(φX)ξν +

3−
ν=1

{ην(ξ)φνφ
2X − η(φνφX)φνξ − η(φX)ην(ξ)ξν} + hAφX − A2φX (3.5)

and

φSX = −3
3−

ν=1

ην(X)φξν +

3−
ν=1

{ην(ξ)φφνφX − X − η(φνX)φφνξ − η(X)ην(ξ)φξν} + hφAX − φA2X . (3.6)

Then from (3.5) and (3.6) it follows that

(φS − Sφ)X = −4
3−

ν=1

ην(X)φξν + 4
3−

ν=1

ην(φX)ξν + h(φA − Aφ)X − (φA2
− A2φ)X . (3.7)

So we are able to calculate the following

Tr (φS − Sφ)2 = hTr (φA − Aφ)(φS − Sφ) − Tr (φA2
− A2φ)(φS − Sφ)

− 4
3−

ν=1

Tr (ην ⊗ φξν)(φS − Sφ) + 4
3−

ν=1

Tr (η ◦ φ ⊗ ξν)(φS − Sφ). (3.8)

On the other hand, the terms in the right side of (3.8) are respectively given by

Tr (ην ⊗ φξν)(φS − Sφ) =

−
i

g(ην((φS − Sφ)ei)φξν, ei)

=

−
i

g((φS − Sφ)ei, ξν)g(φξν, ei) = g((φS − Sφ)φξν, ξν)

= −g(φξν, (φS − Sφ)ξν) (3.9)

and

Tr (ην ◦ φ ⊗ ξν)(φS − Sφ) =

−
i

g(ην((φ
2S − φSφ)ei)ξν, ei)

= ην((φ
2S − φSφ)ξν) = −g((φS − Sφ)ξν, φξν). (3.10)

Then by (3.9) and (3.10), the formula (3.8) becomes

Tr (φS − Sφ)2 = hTr (φA − Aφ)(φS − Sφ) − Tr (φA2
− A2φ)(φS − Sφ)

= −Tr (φA2
− A2φ)(φS − Sφ).
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From this, the right side becomes

Tr (φA2
− A2φ)(φS − Sφ) = Tr , φA2φS − Tr , A2φ2S − Tr , φA2Sφ + Tr , A2φSφ

= 2TrφA2φS − Tr , A2φ2S − Tr , φA2Sφ. (3.11)

On the other hand, the symmetry of ∇ξ S = φAS − SφA, which is equivalent to Lξ S = 0, gives

(φA − Aφ)S = S(φA − Aφ).

This implies

φA(φAS − SφA + SAφ − AφS) = 0,

so that we know

TrφASAφ = TrφA2φS. (3.12)

Then from (3.11) and (3.12) it follows that

Tr (φS − Sφ)2 = −Tr (φA2
− A2φ)(φS − Sφ)

= Trφ2SA2
+ Trφ2A2S − 2Trφ2ASA. (3.13)

On the other hand, the right side of (3.13) can be calculated term by term as follows:

TR φ2ASA = Tr (−ASA + η(ASA)ξ) = −Tr ASA + η(ASAξ),

TR φ2SA2
= Tr (−SA2

+ η(SA2)ξ) = −Tr SA2
+ η(SA2ξ),

and

TR φ2A2A = Tr (−A2S + η(A2S)ξ) = −Tr A2S + η(A2Sξ).

Substituting these formulas into (3.13) gives the following

Tr (φS − Sφ)2 = −3Tr SA2
+ η(SA2ξ) − Tr A2S + η(A2Sξ) + 2Tr ASA − 2η(ASAξ)

= 2η(SA2ξ) − 2η(ASAξ). (3.14)

Now from the expression of the Ricci tensor (3.4) for the Reeb vector field ξ , we have the following respectively

Sξ = 4(m + 1)ξ − 4
3−

ν=1

ην(ξ)ξν + hAξ − A2ξ,

and

η(SA2ξ) = 4(m + 1)‖Aξ‖
2
− 4

3−
ν=1

ην(ξ)g(ξν, A2ξ) + hg(Aξ, Aξ ) − g(A2ξ, A2ξ),

η(ASAξ) = g(SAξ, Aξ)

= (4m + 7)g(Aξ, Aξ) − 3η(Aξ)2 − 3
3−

ν=1

ην(Aξ)2 +

3−
ν=1

{ην(ξ)g(φνφAξ, Aξ) − η(φνAξ)g(φνξ, Aξ)

− η(Aξ)ην(ξ)ην(Aξ)} + hg(A2ξ, Aξ) − g(A3ξ, Aξ).

Then the formula (3.14) for M in G2(Cm+2) becomes

Tr (φS − Sφ)2 = 2η(SA2ξ) − 2η(ASAξ)

= −6‖Aξ‖
2
+ 6η(Aξ)2 + 6

3−
ν=1

ην(Aξ)2 − 8
3−

ν=1

ην(ξ)ην(A2ξ) − 2
3−

ν=1

{ην(ξ)g(φνφAξ, Aξ)

+ η(φνAξ)2 − η(Aξ)ην(ξ)ην(Aξ)}. (3.15)

From this, together with (2.2)–(2.4) and the notion of Hopf, the right side of (3.15) should be vanishing for a Hopf hyper-
surface M in G2(Cm+2) satisfying Lξ S = 0. This gives that the Ricci tensor S commutes with the structure tensor φ, that is,
Sφ = φS. Then by Theorem B we can assert our main result. This gives a complete proof of our main theorem.
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