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0. Introduction

In the geometry of real hypersurfaces in complex space forms M,,(c) or in quaternionic space forms Q,(c) Kimura [1,2]
(resp. Pérez and the author [3]) considered real hypersurfaces in M, (c) (resp. in Q,;(c)) with commuting Ricci tensor, that is,
S¢ = ¢S (resp.S¢p; = ¢;S, i = 1,2, 3) where S and ¢ (resp. S and ¢;, i = 1, 2, 3) denote the Ricci tensor and the structure
tensor of real hypersurfaces in My, (c) (resp. in Q.,(c)).

In [1,2], Kimura has classified that a Hopf hypersurface M in complex projective space P,,(C) with commuting Ricci
tensor is locally congruent of type (A), to a tube over a totally geodesic P, (C), of type (B), to a tube over a complex quadric
Qm_1, cot? 2r = m — 2, of type (C), to a tube over P; (C) x Pin—1)/2(C), cot? 2r = ﬁ where m is odd, of type (D), to a tube
over a complex two-plane Grassmannian G, (C>), cot? 2r = % withm = 9, of type (E), to a tube over a Hermitian symmetric
space SO(10)/U(5), cot? 2r = 2 with m = 15.

The notion of Hopf hypersurfaces means that the structure vector £ defined by & = —JN satisfies A4 = «&, where |
denotes a Kahler structure of P,,(C), N and A a unit normal and the shape operator of M in P,;,(C) (see [4]).

On the other hand, for in a quaternionic projective space QP™ Pérez and the author [3] have classified real hypersurfaces in
QP™ with commuting Ricci tensor S¢; = ¢;S, i = 1, 2, 3, where S (resp. ¢;) denotes that the Ricci tensor (resp. the structure
tensor) of M in QP™ is locally congruent of type Ay, Ay, that is, to a tube over QPX with radius0 < r < 7, kef0,...,m—1}.
The almost contact structure vector fields {&1, &, &3} are defined by & = —JiN, i = 1, 2, 3, where J;, i = 1, 2, 3, denote
a quaternionic Kahler structure of QP™ and N a unit normal field of M in QP™. Moreover, Pérez and the present author [5]
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have considered the notion of V¢R = 0, i = 1, 2, 3, where R denotes the curvature tensor of a real hypersurface M in QP™,
and proved that M is locally congruent to a tube of radius % over QP.

Now let us consider a complex two-plane Grassmannian G, (C™*2) which consists of all complex two-dimensional linear
subspaces in C™*2. Then the situation for real hypersurfaces in G,(C™?) with commuting Ricci tensor is not so simple and
will be quite different from the cases mentioned above.

So in this paper we consider a real hypersurface M in complex two-plane Grassmannians G,(C™"?) with commuting
Ricci tensor, S¢ = ¢S, where S and ¢ denote the Ricci tensor and the structure tensor of M in G, (C™+2), respectively.
The curvature tensor R(X, Y)Z of M in G,(C™"?) can be derived from the curvature tensor R(X, Y)Z of complex two-plane
Grassmannians G,(C™*2) for any vector fields X, Y and Z on M. Then by contraction and using the geometric structure
I =JJ, i = 1,2, 3, connecting the Kahler structure J and the quaternionic Kihler structure J;, i = 1, 2, 3, we can derive
the Ricci tensor S given by (see Section 3)

4m—1

g(SX, V) = > g(R(e, X)Y, e),
i=1

where {e, ..., es_1} denotes a basis of the tangent space T,M of M, x € M, in G,(C™*2).

The ambient space G, (C™*?) is known to be the unique compact irreducible Riemannian symmetric space equipped with
both a Kahler structure J and a quaternionic Kahler structure J not containing J (see [6,7]). So, for in G, (C™*?) we have two
natural geometrical conditions for real hypersurfaces: that [£] = Span {£} or ®1 = Span {&;, &,, &3} is invariant under the
shape operator. By using such kinds of geometric conditions Berndt and the present author [6] have proved the following:

Theorem A. Let M be a connected real hypersurface in G,(C™*2), m > 3. Then both [£] and ©* are invariant under the shape
operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G,(C™ 1) in G,(C™*?2), or
(B) mis even, say m = 2n, and M is an open part of a tube around a totally geodesic QP" in G, (C™2).

When the structure vector field £ of M in G,(C™"2) is invariant under the shape operator A, M is said to be a Hopf
hypersurface. In such a case the integral curves of the structure vector field £ are geodesics (see [7]). The flow generated
by the integral curves of the structure vector field £ for Hopf hypersurfaces in G, (C™"?) is said to be a geodesic Reeb flow.

On the other hand, we say that the Reeb vector field is Killing, that is, £:g = 0 for the Lie derivative along the direction
of the structure vector field &, which gives a characterization of real hypersurfaces of type (A) in Theorem A. Moreover, it
was verified in [8] that L¢g = 0 is equivalent to £LzA = 0 for the shape operator A of M in G, (Cm2),

When the Ricci tensor S of M in G,(C™"?) commutes with the structure tensor ¢, we say that M has a commuting Ricci
tensor. In the proof of Theorem A we have proved that the one-dimensional distribution [£] belongs to either the three-
dimensional distribution © or to the orthogonal complement © such that T,M = © @ ©=. The case (A) in Theorem A is
just the case where the one-dimensional distribution [£] belongs to the distribution ©. Of course they satisfy that the Reeb
vector £ is Killing, that is, the structure tensor ¢ commutes with the shape operator A. But it is not difficult to check that
the Ricci tensor S of real hypersurfaces of type (B) mentioned in Theorem A cannot commute with the structure tensor ¢.
Moreover, in Section 5 we can check that any real hypersurface of type (A) in Theorem A has a commuting Ricci tensor.

In this paper we consider such a converse problem and want to give a complete classification of real hypersurfaces in
G, (C™+2) satisfying S¢p = ¢S as follows:

Theorem. Let M be a Hopf hypersurface in G,(C™2) with commuting Ricci tensor, m > 3. Then M is locally congruent to a tube
of radius r over a totally geodesic G,(C™1) in G,(C™*2).

On the other hand, it is known that the Ricci tensor S of an Einstein hypersurface M in G,(C™*?) is given by S = ag for
a constant a and a Riemannian metric g defined on M. Naturally the Ricci tensor S commutes with the structure tensor ¢,
that is, S¢ = ¢S. So by virtue of our theorem mentioned above it becomes a hypersurface of type (A) in G,(C™*2). But by
Proposition C in Section 5 it can be easily checked that any tubes of radius r over a totally geodesic G,(C™1) in G,(C™+?)
cannot be Einstein (see [9]). Then, as an application of our theorem in the direction of mathematical physics, we assert the
following:

Corollary. There do not exist any Hopf Einstein hypersurfaces in Go(C™2), m > 3.

In Section 2 we recall the Riemannian geometry of complex two-plane Grassmannians G, (C™*2) and in Section 3 we will
show some fundamental properties of real hypersurfaces in G,(C™*?). The formula for the Ricci tensor S and its covariant
derivative VS will be shown explicitly in this section. In Sections 4 and 5 we will give a complete proof of the main theorem
according to the geodesic Reeb flow satisfying £ € © or the geodesic Reeb flow satisfying & € D+.

1. Riemannian geometry of G, (C™+?)
In this section we summarize basic material about G,(C™*?); for details we refer the reader to [10,6,7,11]. By G,(C™+?)

we denote the set of all complex two-dimensional linear subspaces in C™*2. The special unitary group G = SU(m + 2) acts
transitively on G, (C™2) with stabilizer isomorphic to K = S(U(2) x U(m)) C G.Then G,(C™*?) can be identified with the
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homogeneous space G/K, which we equip with the unique analytic structure for which the natural action of G on G, (C™*+?)
becomes analytic. Denote by g and ¢ the Lie algebra of G and K, respectively, and by m the orthogonal complement of ¢ in g
with respect to the Cartan-Killing form B of g. Then g = £ @ m is an Ad(K)-invariant reductive decomposition of g. We put
o = eK and identify T,G,(C™*+?) with m in the usual manner. Since B is negative definite on g, its negative restricted to m x m
yields a positive definite inner product on m. By Ad(K)-invariance of B this inner product can be extended to a G-invariant
Riemannian metric g on G, (C™*?). In this way G,(C™?) becomes a Riemannian homogeneous space, even a Riemannian
symmetric space. For computational reasons we normalize g such that the maximal sectional curvature of (G, (C™*2), g) is 8.

The Lie algebra ¢ has the direct sum decomposition ¢ = su(m) @ su(2) @ R, where R is the center of ¢. Viewing ¢ as the
holonomy algebra of G, (C™*2), the center 9% induces a Kihler structure ] and the su(2) part a quaternionic Kahler structure J
on G, (C™*2),1f J; is any almost Hermitian structure in J, then JJ; = J;J, and JJ; is a symmetric endomorphism with (JJ;)? = I
and tr(JJ;) = 0. This fact will be used in later sections.

A canonical local basis Ji, J», J3 of J consists of three local almost Hermitian structures J, in J such that J,J,+1 =

Jo+2 = —Jv+1)y, where the index is taken modulus 3. Since J is parallel with respect to the Riemannian connection V of
(G2(C™2), g), there exist for any canonical local basis J;, J», J5 of J three local 1-forms q1, g2, g3 such that
Vo = Qo2 X)or1 — Qo1 KX)oz (1.1)

for all vector fields X on G,(C™2).
Letp € G,(C™2) and W a subspace of T,G,(C™"2). We say that W is a quaternionic subspace of T,G,(C™2) if W C W

for allJ] € J,. And we say that W is a totally complex subspace of T,G, (C™*2) if there exists a one-dimensional subspace
0 of J, such that JW C W forall] € Wand JW L W forallJ bl Jp- Here, the orthogonal complement of U in Jj, is
taken with respect to the bundle metric and orientation on J for which any local oriented orthonormal frame field of J is
a canonical local basis of J. A quaternionic (resp. totally complex) submanifold of G,(C™*+?) is a submanifold all of whose
tangent spaces are quaternionic (resp. totally complex) subspaces of the corresponding tangent spaces of G, (C™"?).

The Riemannian curvature tensor R of G, (C™*?2) is locally given by

3
RX,Y)Z = g(Y,2)X — g(X,2)Y + g(Y, 2)]X — g(X, 2)JY — 2g(X, Y)JZ + Z{g(luY,Z)JvX -8 X, D)LY

v=1

3
—28(LX. Y)W Z} + Z{g(luJY, D)X — g(WJX, DY}, (1.2)

v=1

where Ji, J, J5 is any canonical local basis of J.
2. Some fundamental formulas for real hypersurfaces in G,(C™*?)

In this section we derive some fundamental formulas which will be used in the proof of our main theorem. Let M be a
real hypersurface in G, (C™*?), that is, a submanifold in G,(C™*?) with real codimension 1. The induced Riemannian metric
on M will also be denoted by g, and V denotes the Riemannian connection of (M, g). Let N be a local unit normal field of M
and A the shape operator of M with respect to N.

The Kihler structure J of G, (C™*2) induces on M an almost contact metric structure (¢, £, 1, g). Furthermore, letJ, J», J3
be a canonical local basis of J. Then each J, induces an almost contact metric structure (¢,, &,, 1,, g) on M. Using the above
expression (1.2) for the curvature tensor R, the Gauss and the Codazzi equations are respectively given by

R, Y)Z = g(Y,2)X — g(X,2)Y + g(pY, 2)$X — g(@X, 2)pY — 22(¢X, V)$Z
3
+ D 1Y, D)pX — 2(X, )puY — 28(hX, Y)pZ)
v=1
3 3
+ ) {2@Y. 2)$udX — (DX 2)$upY} = Y (V)1 (D)pupX — n(X)1, (Z2)prpY )
v=1 v=1
3
— > InX)g(@upY. Z) — n(V)g($udX, 2)} £, + gAY, Z)AX — g(AX, Z)AY

v=1

and

3
(VxA)Y — (WWAX = n(X)oY — n(Y)$pX — 2g(dX, Y)§ + Z {mX)¢Y — (V)X — 2g(¢X, Y)§,}

v=1

3 3
+ 3 @)Y — 0 @V)$8X) + D (nCOIN,@Y) — 1V ($X)} &,
v=1 v=1

where R denotes the curvature tensor of M in G, (C™2).
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The following identities can be proved in a straightforward manner and will be used frequently in subsequent calculations
(see[12,9,8,11]):
¢v+1$v = _§v+27 d’v%-erl = Sv+2»
& = 8, M (@X) = n($X),
Gvdv1X = Gv2X + M+1(X)E,
Gv41PuX = —Pui2X + 7y (X)Ev41.
Now let us put
X=¢X+nXN, LX=¢X+nXN

for any tangent vector X of a real hypersurface M in G,(C™*?), where N denotes a normal vector of M in G,(C™*?). Then
from this and the formulas (1.1) and (2.1) we have that

(Vx@)Y = n(Y)AX — g(AX, Y)§, Vx§ = ¢AX, (2.2)
ngv = qv+2(x)§v+1 - qv+l(x)§v+2 + ¢UAX7 (2-3)

(VX¢V)Y = _QV+1(X)¢U+2Y + qv+2 (X)¢v+ly + Ny (Y)AX - g(AXs Y)SU.
Summing these formulas, we find the following;:

Vx(¢v8) = Vx())

= (Vx@)§y + ¢(Vx§,)
= QU+2(X)¢V+1‘§ - QU+1(X)¢U+2$ + d)vd)AX - g(AX, é)gv + n(év)AX- (2-5)
Moreover, from JJ, = J,J, v = 1, 2, 3, it follows that
dPX = PdX + 10, (X)§ — n(X)E,. (2.6)

3. Proof of main theorem

In this section let us consider a real hypersurface M in G,(C™*?) with commuting Ricci tensor, that is, S¢ = ¢S.
Now let us contract Y and Z in the equation of Gauss in Section 2. Then the Ricci tensor S of a real hypersurface M in
G, (C™2) is given by
4m—1
SX = > RKX.ee;

i=1

3 3
= (4m+ 10X = 3n00E =3 0, 00& + 3 ((Tr,0)$.9X — ($,)X)
v=1 v=1

3 3
- Z{m(swmx — n(X)py&,) — Z{(Tr«pmmoo — 1(¢u$X)}E, + hAX — AX, (3.1)
where h denotes the trace of the shape operatorA of M in G,(C™*2), From the formula JJ, = J,J, TrJJ, = 0,v = 1, 2, 3, we
calculate the following for any basis {e1, . .., esn—1, N} of the tangent space of G, (C™+?):
0=TrJJ,
4m—1

= Y gUhew e +gUN. N)
k=1

= Trop, —ny(§) —gUuN, JN)
= Tro¢p, —2n,(§) (3.2)
and
@u9)°X = Gop(@DPuX — 1, (O + 1(OE,)
= ¢u (=X + 1@ X)E) + n(X)$, €
=X —nX)& + n(dX)pu€ + n(X){—=§ + n.(5)E} (3.3)
Substituting (3.2) and (3.3) into (3.1), we have

3 3
SX = (@m +10)X — 3n(X)5 =3 0,008 + Y (@ dudX — X — n(@X)o& — nX)n,(§)E,) + hAX — A2X

v=1 v=1

3 3
= @m+7)X = 30008 =3 0,008 + 3 (0. E)$dX — 1§ X)bsE — nX)nu ()6} +hAX — AX.  (3.4)

v=1 v=1
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Now let us take a covariant derivative of S¢p = ¢S. This gives that
(VyS)dX + S(Vyd)X = (Vyd)SX + ¢p(VyS)X. (3.5)
Then the first term of (3.5) becomes

3
(VyS)pX = —3g(¢AY, $pX)& — 3 Z{Qv+2(y)ﬁu+1(¢x) — Qo1 (V)Nu12(X) + g(,AY, 9X)}E,

v=1

3
=3 @@ Mé — G (Nér + $rAgX)

v=1

v=1

3
+ Z[Y(m(&)mq&zx + 1 Ef =011 (NGr120°X + qu2(V)$r119°X

+ 00 (P*X)AY — g(AY, ¢*X)E,} — 1, (E)g(AY, dX)$uE — g(PAY, d,PX) &
F{Qur1(VIN(Pr+20X) — Qo2 (V)N (u110X) — 00 (@XIN(AY) + 1(£,)2(AY, X)), &

— 0@ dX){qv12(V)Pv118 — Qo1 (V)Pu128 + GuPAY — n(AY)E, + 1(8,)AY} — g(PAY, ¢X)nv(€)5v:|

+ (Yh)A@X + h(VyA)pX — (VyA2)pX.

The second term of (3.5) becomes

3 3
S(Vy$)X = n(X) [(4m +7AY = 3n(AV)E —3 ) (AVE + Y {0 (E)PupAY — n($AY)pE — n(AY ), (£)E,)
v=1 v=1

3
+hA%Y —ABY} — gAY, X) [<4m +7)E =36 — 4y nu(E)E, + hAt —Azs] :

v=1
The first term of the right side in (3.5) becomes
(Vy¢)SX = n(SX)AY — g(AY, SX)§,
and the second term of the right side in (3.5) is given by

3
d(VyS)X = —3n(X)p*AY — 3 Z{qV+2(Y)77u+1(X) — Qo1 (V)Ny12X) + 2(,AY, $X) )},

v=1

3
=33 0C{@u2(NPEri1 — Q1 (VPEura + poAY)

v=1

3
+ Z{Y(m@))qb%qﬁx + 1 EN=qv+1(V)PPy 120X + Qo2 (V) PPy 110X

v=1

+ 1m0 (@X)PAY — g(AY, pX) P&, } + nu (E){n(X)PpPAY — g(AY, X))
—&(@AY, 9, X)PPuE + {qur1(YIN(Bv+2X) — qur2(Y)N(Pu+1X) — nu (X)n(AY)
+ n(gv)g(AYv X)}¢¢v§ - 77(¢VX){QV+2(Y)¢¢\;+1§ - QU+1(Y)¢¢1;+2§ + ¢¢U¢AY

—n(AY)$&, + n(5,)PAY} — g(PAY, X)n, (§)p&, — n(X)Y (1, (§))¢&, — U(X)nu(5)¢vy«§v:|

+ (YD PAX + hp (VyAX — p(VyADX.
Putting X = £ into (3.5) and using that the structure vector £ is principal, that is, A& = «£, then we have

3
S(Vyg)é = [(4m +7)AY = 3n(AY)E —3 ) nu(AY)E,

v=1

3
+ ) I (E)puBAY — (B PAY)puE — an(Y)n,(€)E,} + hA%Y — A3Y:|

v=1

3
—an(Y) [4(m +DE—4Y 0, ()8, + (wh — oﬂ)s} .

v=1
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Moreover, the right side of (3.5) becomes
(Vy@)SE + ¢(VyS)E = n(SE)AY — g(AY, SE)E + ¢(VyS)§E

v=1

3
= |:{4(m +1)+he—a’}—4) nv(gf} AY — 3n(X)p*AY

3
- {{4<m + Do +ha® —aPin(Y) —4) m@)m(fw)} §

v=1

3
-3 Z{%H(Y)mﬂ(%) = Qu+1(V)0042(8) + 10, (PAY)}98,

v=1

3
=33 @E{qur2(NGEw 11 — Qi1 (VPEui2 + dpAY)

v=1

3

+ Z[m(é){wmy —an(YV)$*6,} — g(PAY, 9£,)¢%E,

v=1

—Y(1,(8)98, — nu($)¢VY§vi| + h¢(VyAE — ¢(VyA)S.

From this, putting Y = & into L = R, then it follows that

3 3
0= (@2 1) = Qus1EMs2EVPE + Y 1 ENQv12E)PErs1 — Qi1 E)pEp2 + 29?8},
v=1 v=1

1797

Now in order to show that & belongs to either the distribution © or to the distribution ®+, let us assume that £ = X; + X,

for some X; € ® and X, € ©*. Then it follows that

3
0= {qus2® 1) — Qi1 EINus2(E)} (GuX1 + PuXa)

v=1

3
+ ) )] Q2@ DuiXa + Bui1X2) — Qi1 (E)(Byi2Xs + PuiaXa) — by +an(ENXi +Xa) -

v=1

Then by comparing the © and ©®* components of (3.6), we have respectively

3 3
0 = Y (@2 @nr1®) — Q1 G2 )Xo + Y 16Xy

v=1 v=1

3
+ Z Mo (E){qv+2(E)Pv+1X1 — Gu1(§)Pu2Xa},

v=1
3
0 = Y (G211 — Qus1E)2(E))dXe

v=1

3
+ ) EQ2E)brriXe — Qa1 (E)pri2Xe — aky + an(E)Xa).

v=1

Taking an inner product (3.7) with X;, we have

3
ad (€’ =0.
v=1

(3.6)

(3.9)

Thena = 0orn,(¢§) = 0forv = 1, 2, 3. So for a non-vanishing geodesic Reeb flow we have 5, (§) = 0, v = 1, 2, 3. This
means that £ € ©, which gives a contradiction to our assumption & = X; + X;. Including this, we are able to assert the

following:

Lemma 3.1. Let M be a Hopf hypersurface in G,(C™"2) with commuting Ricci tensor. Then the Reeb vector & belongs either to

the distribution © or to the distribution D+
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Proof. When the geodesic Reeb flow is non-vanishing, that is @ # 0, (3.9) gives £ € ©. When the geodesic Reeb flow is
vanishing, we differentiate A& = 0. Then by Berndt and Suh [7] we know that

3
> @ nu(eY) =0.

v=1
From this, on replacing Y by ¢V, it follows that
3

> niEm) =o.

v=1

So if there are some Y € © such that n(Y) # 0, then n,(§) = 0forv = 1, 2, 3. This means that £ € ©.1f n(Y) = 0 for any
Y € ©, then we know that £ € ©+. O

4. Real hypersurfaces with geodesic Reeb flow satisfying § € ©
Let us consider a Hopf hypersurface M in G,(C™2) with commuting Ricci tensor, that is, S¢ = ¢S and £ € ©. From this,
differentiating, we have
(VyS)opX + S(Vyd)X = (Vyd)SX + ¢(VyS)X. (4.1)

In this section let us show that the distribution ® of M in G,(C™*?) satisfies g(AD, ®*) = 0 for the case £ € D.
Now using £ € ® in (4.1), the first term becomes

3
(VyS)9X = —3g(pAY, pX)§ — 3 Z{qu+z(Y)nu+1(¢X) = Qo 1(Y)N042(0X) + g(AY, 9X)}E,

v=1

3
=3 @ dur2(NEvs1 = Q1 (Vs + $oAGX)
v=1

3

+Y |:{O”](Y)n(¢vx) — nX)n, (PAY) — g(AY, ¢, X)}b,€

v=1

A1 (VN2X) — g2 (VN1 (X) + an, (@X)n(Y) )}, &
+ KN 2(V)Pv11€E — qui1 (V)28 + Py pAY — a’?(Y)Su}j|

+ (Yh)A$X + h(VyA)pX — (VyA?)pX.
The second term of (4.1) becomes
S(Vy@)X = n(X)S(AY) — g(AY, X)S§

3 3
- n(X)[(4m + DAY = 3an(Y)E =3 nuAVIE — D n($,AY)d.E + hATY —A3y}
v=1 v=1
—g(AY, X) {4(m + D& + (ha — o?)E} .
The first term of the right side in (4.1) becomes
(Vy@)SX = n(SX)AY — g(AY, SX)§

= 4(m + Dn(X)AY + (ha — a®)n(X)AY — g(AY, SX)&,

and the second term of the right side in (4.1) is given by

3
Pp(VyS)X = —3n(X)¢p°AY — 3 Z{quu(Y)mH(X) = Q1Y) 12(X) + g(¢,AY, X)} 9§,
v=1
3 3
=3 @2 (NP1 — Qi1 (VDPEs + dPAY Y + Y Z(PAY, $,X)E,
v=1 v=1
3

{9v11(Y)1(Dy42X) = Qo2 (V)N(@011X) — an, X)n(Y)}E,

v=1

3
+ ) 1@ X) Hdv+2(V)év+1 — Qor1(V)év 42} — @AY + an(Y)gé, ]
v=1

+ (Yh)pAX + ho(VyA)X — p(VyA®)X.
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Substituting these formulas into (4.1) and putting X = &, into the equation obtained, and next using that the structure
vector £ isin © and (2.1), we have

— 3g(AY, §,)E 4+ (YDAQE, + h(VyA)$E, — (VyA))pE, + {4(m + 1) + (h — 0)a)g(AY, £,)§

3
= —g(AY,SE)E — 4 (a1 — G (DN + SBAY, £

v=1

3
-4 {Q,u+2 (Y)¢Eu+l - qu+l(y)¢§u+2 + ¢¢MAY} +4 Zg(¢AY, ¢v%—u)év

v=1

+an(Y)E, + (Y)pAE, + hp(VyA)E, — ¢(VyAD)E,. (4.2)
Putting X = &, into (3.4) and using § € ©, we have
S&, = (4m + 7)E, — 3£, + hAE, — A%E,.
So the first term of the right side of (4.2) becomes
~g(AY,S§,)E = —4(m + Dg(AY, §,)§ — hg(A&,, AY)§ + g(A%E,, AY)E.
Then substituting this into (4.2), we have

3
4 Z{QU+2(Y)7’1)+1(E;L) — qQup1(V)ny12 (éu) + g(,AY, SM)}d)‘i:v

v=1

+ 42V 11 — Qui1 (V)PS0 + 9P AY }

+{(Bm+5) + (h — @)a}g(AY, £,)& + hg(AE,, AY)E — g(A’E,, AY)E
3

— 4Zg(¢AY, dvE)& —an(Y)&, + (Yh)(Ap — pA)E,

v=1

+h{(VyA)p — d(VyA)}E, — (VA — (VvAD))E,
=0. (4.3)
From this, taking the inner product with &, we have
{(8m+5) + (h — Q)a)g(AY, §,) + hg(Ag,, AY) — g(A%E,,, AY)
+hg(VyA)YPE,, ) — g((VyA®)$E,, §) = 0. (4.4)
On the other hand, we have
(VYA §) = ag(PAY, ¢§,) — g(APAY, §§,),
g(VyA)PE,., §) = a’g(PAY, 9E,) — S(A*PAY , ¢E,.).
From this, together with (4.4), we have

{(8m +5) + 2(h — a)a}AE, + hA%E, — A%E, + hAPAGE, — APA*pE, = 0. (4.5)
Now putting X = £ in (4.1) and using £ € ©, then we have

3 3
{(4m +7AY = 3an(Y)E —3) ny(AV)E, — Y 0. (PAY)¢.& + hA’Y — m}

v=1 v=1

—an(¥) {4(m+ 1§ + a(h — a)§}
= [{4m + 1) + (h — ) JAY — {4(m + Do + (h — a)a’In(V)E] + (3 — ah + a?)AY

3 3
— G —*h+ @ )E —3 Y 1 (GAV)PE, + Y 1u(AV)E, — hpAGAY + pAZHAY . (456)

v=1 v=1

From this, putting Y = &, and also using § € ©, we have

3 3
2(4m + 7)A‘§u -2 Z nv(Agu)gu —4 Z nv(d’Agu)vas + hAzéu - AB%';L - h¢A¢A§M + ¢A2¢ASM =0. (4.7)

v=1 v=1
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On the other hand, we have assumed that M has a commuting Ricci tensor, that is S¢ = ¢S. From this, together with
& € ©, we have

3 3
hAGX — A’§X = hpAX — pA’X — 4 nu(X)PE, +4 Y 1, ($X)é,. (48)

v=1 v=1

Then by putting X = A, into (4.8) we have

3 3
hAGAE, — AGAE, = hpA’E, — A’E, — 4 nu(AE)PE, +4 Y 1, (PAEL)E,.

v=1 v=1

From this, on applying ¢ to the left side we know that

3 3
hGAGAL, — PA*PAE, = —hA’E, + A&, +4 ) nu(AEDE +4 ) nu(BAE)PE,. (4.9)

v=1 v=1

Also, by putting X = &, into (4.8) we have

hAGE, — A*pE, = hQAE, — PA%E, — AdE, — 4E,,. (4.10)
From this, on applying A¢ to the left side and using that £ is principal we have

hAGAQE, — ApA*PE, = —hA%E, + AE, + 4AE, — 4AQE,. (4.11)
Then substituting (4.11) into (4.5), we have

ApE, = BAS,., (4.12)

where we have put 8 = }1 {8m+9) +2(h — w)a}.
On the other hand, substituting (4.9) into (4.7), we have

3

3
hAzEu - A3§u =3 Z Ny (Agu)gv +4 Z Ny (¢A§u)¢v§ — (4m + 7)A§u- (4.13)

v=1 v=1

Now substituting (4.12) into (4.10), we have

.B(hAgu _A2E;L) = hd’A%—u - ¢A2Eu - 4¢‘§;¢ - 4%-;1- (4-14)
Then by applying the structure tensor ¢ to the left side of (4.14), we have
,B(h(ﬁA%'u - ¢A2§;L) = _(hASM _AZSM) + 4§u - 4¢§p_
From this, together with (4.14), on applying the function § to both sides, we have
B*(hAE, — A’E,) = B(hQAE, — pA’E,) — ABE, — 4BE,
= —(hAg, — A’E,) + 46, — 49, — APPE, — 4P,

Then we put this as follows:

hAg, — A%, = A&, + udéy, (4.15)
where A (resp. ) denotes _;(2’3;11) (resp. w= %) From this, together with (4.12), we have
hA*E, — A%, = MAE, + nAPE, = (L + uB)AE,. (4.16)

On the other hand, by (4.13) the left side of (4.16) becomes

3 3
O+ pB +4m + DA, =3 n(AEDE +4 ) nu(PAE)BE. (4.17)
v=1 v=1

Then (4.17) gives the following for & € D:

3
Oh+ 1B +4m + NG(AE,, $sE) = 4 Y 1, (PAE)Z (D&, 65E)
v=1

= 4n;5(PAE,) = —4g (A8, P&s),
which means that g(A¢;s§, §,) = 0, because A + B + 4m + 11 > 0. Then (4.17), together with A + ufB +4m +7 > o,

gives g(AD, ®1) = 0. Then by Theorem A we know that M is locally congruent of type (B), that is, to a tube over a totally
real and totally geodesic QP", m = 2n, in G,(C™*?). Concerned with such a tube, we are able to recall a proposition given
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by Berndt and the present author [6] as follows:
Proposition B. Let M be a connected real hypersurface of G,(C™*2). Suppose that AD C ©, A& = «&, and £ is tangent to .
Then the quaternionic dimension m of G,(C™*2) is even, say m = 2n, and M has five distinct constant principal curvatures:
o = —2tan(2r), B = 2cot(2r), y =0, A = cot(r), u = —tan(r)
with some r € (0, 7t /4). The corresponding multiplicities are
m) =1, m(p)=3=m(y), mQ)=4n—4=m(u)
and the corresponding eigenspaces are
TO{ :Rga Tﬂ :3_]%—3 Ty :357 T)u T;La
where
T,®T,=(HCE), =T, =T, I =T,
Now it remains to check whether the Ricci tensor for real hypersurfaces of type (B) in Theorem A is commuting or not.

So let us suppose that the Ricci tensor S of type (B) is commuting, that is S¢ = ¢S. Then this gives (4.8). So if we consider
an eigenvector X € Ty, by Proposition B we know that ¢X € T,. Then applying such a situation to (4.8), we have

A—w)h—2r—pn)=0,

where the function h denotes the trace of the shape operator A of M in G,(C™*2).
Since A — u # 0, we know that

h=X*+ pu =cotr —tanr = 2 cot 2r.
By Proposition B, we also know that
h = —2tan2r + 6 cot2r + (4n — 4)(cotr — tanr).
Then by comparing two formulas for the function h we know that
_
22n—1)
On the other hand, by putting X = &,,, u = 1, 2, 3, into (4.8) we have
$uE + hAGE, — A pE, = —3¢E, + hpAE, — pA’E,..

In this formula, if we consider an eigenvector &, € Tg, then ¢¢, € T,, Apé, = 0, pAE, = 2cot2r¢pé,, and PA%E, =
(2 cot 2r)2¢€,,. So it follows that

cot? 2r = (4.18)

(4 cot® 2r — 2hcot2r + 4)¢, & =0,
where the trace h is given by h = —2 tan 2r + 2(4n — 1) cot 2r. Then substituting this, we have another formula:

1
2n—1

cot? 2r = (4.19)

Then from (4.18) and (4.19) we have a contradiction. So we have shown that there do not exist any real hypersurfaces of type
(B) satisfying S¢ = ¢S. Accordingly, we have proved that no real hypersurface in G,(C™*?) with commuting Ricci tensor
can exist for the case £ € D.

5. Real hypersurfaces with geodesic Reeb flow satisfying £ € ©*
Now let us consider a Hopf hypersurface M in G,(C™"?) with commuting Ricci tensor and £ € ©. Now differentiating
S¢ = ¢S gives
(VyS)9X + S(Vy @)X = (Vy@)SX + ¢ (VyS)X.

In this section by Lemma 3.1 we only discuss the geodesic Reeb flow & belonging to the distribution ©. Since we have
assumed that £ € ©+ = Span{&;, &, &3}, there exists a Hermitian structure J; € J such that JN = J;N, that is, £ = &;,. Then
it follows that

D& = P28 = P51 = &3, 93 = P36 = —&. (5.1)
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From this, together with the expression for (3.4) and £ € ©*, we have
(4m + 1)g(AX, Y)§ — 3[{qz(Y)n3(X) + q2(Y)m2(X)}s1 — q1(Y)n2(X)&2 — q1(Y)n3(X)&3] + 2n(X)n2(AY)E

3
+2n(X)n3(AY)&E; + Z 1, (X) P, @AY + (YR)APX + h(VyA)pX — (VyA*)pX + n(X){hA’Y — A’Y)

v=1

3
= {—g(AY, SX) — n3(X)n3(AY) — n2(X)n2(AY)}5 + 4[g(h2AY, X)&3 — g(h3AY, X)&3] — 3 Z 1 (X)pp,AY

v=1

3
+4 Zg(quY, Do X)E + N3(X)2AY — 12 (X)P3AY + (Y)PAX + hp(VyAX — ¢ (VyADX. (5.2)

v=1
Now putting X = £ in (5.2), we have
(4m + Dg(AE, Y)E + 212(AY)&, + 2n3(AY)Es + ¢1pAY + hA’Y — A’Y
= —g(AY, 58)§ + 4{g(d2AY, §)&3 — g(3AY, §)&2} — 39P1AY + 4g(PAY, $26)8;
+4g(PAY, $38)E3 + h(VyA)E — p(VyAD)E.

From this, if we use the following formulas:

3
SE =4(m+ 1)E — 4 0, (E)E + hAE — A% = (4m + ha — o’)&

v=1
and
g(AY, SE) = a(d4m + ha — a®)n(Y),
then it follows that
G1PAY + hA’Y — APY = 615(AY)E, + 613(AY)E3 — hpAPAY + PA’PAY — 3pp1AY. (5.3)
On the other hand, by the equation of Codazzi in [6] (see page 6), we have

3
APAY = ¢Y + Z{m(YﬂPEu + 1 (@Y)E + nu(E)dY — 2n(Y)n, (§)pE, — 20, (E)ny (@Y)E} + a(Ad + PA)Y

v=1

= @Y + d1Y + n2(V)pEz + n3(Y)&3 + n2(dY )& + n3(dY)Es + a(Ad + pA)Y. (5.4)
SoforanyY € D, (5.4) gives that AQAY = ¢Y + 1Y + a(Ap + ¢pA)Y. This implies
PA’PAY = PA(ADAY) = A(PY + ¢1Y)
= QAPY + PpAP1Y + adpA(Ap + PA)Y.
From this, together with (5.3), it follows that
P1pAY + hA’Y — A’Y = 612 (AY)E, + 6n3(AY)Es — h(—Y + ¢d1Y) — had(Ap + pA)Y + pASY
+ PAP1Y — 3¢ph1AY + apA(AP + PA)Y. (5.5)
On the other hand, we calculate the following:

SPY = (4m + 7)Y — 3n2(dY)& — 3n3(9Y)Es + $19>Y — (Y€ — n(Ps9Y)psé + hAY — A*pY,
3
PSY = (4m + 7)pY — 3> 0y (Y)P&, + ¢d19Y — n(2Y)hok — n(hsY)psE + hAY — pA’Y.

v=1
So for any X € © the condition S¢p = ¢S implies that
—1Y + hAQY — A%pY = p1pY + hpAY — pA%Y.
Then by replacing Y by ¢Y for Y € © we have
hA’Y — A’Y = —Ad19Y + App1Y — hAPAPY + ApApY. (5.6)
Now by using (5.4) for Y € ®, the terms in the right side become respectively

APAYY = @Y + ¢19Y + a (A + pA)Y
= —Y + $1¢Y + a(Ap + pA)PY
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and

APA’PY = GAPY + p1APY + N2 (APY)PE; + N3 (APY)PEs + 12 (PAPY)E; + 13 (PAPY)Es + a(Ad + pABY .
From these, together with (5.5) and (5.6), we have
P1PAY — Ap1@Y + App1Y + hY — hh@dY — ah(Ad + PA)PY + pAPY + a(Ad + pA)APY
H{P1APY + n2(APY) P& + n3(APY)pE3 + N2 (PAPY )&, + 13(PAPY )E3}
= 6m2(AY)&; + 613(AY)E3 — hod1Y + pAP1Y — 3dP1AY + hY + pAPY
—hag(Ap + GA)Y + apA(Ap + pA)Y.
Then this can be rearranged as follows:
G1PAY — Ap19Y + APpp1Y — h19Y + agpY
+{P1APY + 12(APY) P& + n3(APY)PEs + M (PAPY)Es + n3(PpAPY)E3}
= 6m2(AY)&; + 613(AY)E3 — hpd1Y + pAP1Y — 3pP1AY + adpdrY, (5.7)
where we have used the following formulas obtained from (5.4):
aAPAPY = —aY + api9Y + o (A + pA)PY
and
apAPAY = —aY + app Y + @’ p(Ap + A)Y.
Now let us take the inner product (5.7) with &,. Then for any Y € © we have

g(P19AY, &) — g(19Y, AL) + g(@h1Y, ASy) — (h — )g($19Y . §2) — E(APX, $182) + 13(A@X) + 12(PAPY)

= 6n2(AY) + g(@AP1Y, &) — 3g(ph1AY, &) — (h — a)g(Ppp1Y, &). (5.8)
Then by a direct calculation in (5.8) for any Y € ©, we have
N3(A@Y) = 22 (AY) + n3(Ag1Y). (5.9)
Similarly, if we take the inner product (5.7) with &3, then it follows that
— n2(A@Y) = 2n3(AY) — n2(Ad1Y) (5.10)

for any vector field Y € ®. Then in this section we know that the distribution ® can be decomposed into two distributions
D, and D, defined in such a way that

D1 ={Y € D|pY = PV}
and
Dy ={Y € D|pY = —¢1Y}.

So first let us consider the distribution ©;. The formulas (5.9) and (5.10) imply that 7,(AY) = O for any Y € ®; and
v = 1, 2, 3. Then we get our assertions on the distribution ©1.
Next we consider the distribution ©,. Then by (5.9) and (5.10) on such a distribution D, we have

m(ApY) = —n3(AY) and n3(AQY) = n2(AY). (5.11)
Substituting these formulas into (5.7), we have forany Y € D,,
G19AY + 91APY = 4y (AY)E; + 4n3(AY)Es + PAP1Y — 39¢,AY. (5.12)

From (5.4) and using ¢pY = —¢,Y, Y € D,, we have
APAY =0 and ApAgY = 0.
So from this, together with (5.3) and (5.6), it follows that
4d1AY + hA’Y — A’Y = 613 (AY)&; + 613(AY)éE3
= 4¢1pAY + APAPY
= 4g19AY + PAPX + P1APY + n2(APY)PE;

+13(APY) PS5 + n2(PAPY )& + n3(PAPY)E; (5.13)
where in the first equality we have used ApA¢Y = 0 and the fact that p1pAY = ¢pP1AY +n(AY)E = PP AY forany Y € D,.
Now let us consider eigenvectors Y, ¢Y € ©, such that ¢Y = —¢,Y. Then we can put

3
AY = 1Y 4 ), (AV)E,
v=1
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and

3
APY =AY + ) 1, (ABY)E,.

v=1

Then this also implies that

3
GAY =AY + ) nu(AY)QE,.

v=1

From these formulas and (5.13) it follows that

3 3
sy +) m(Av)wsu} +1 {y + m(A¢>Y)¢1sv}
v=1 v=1
3
= 40, (AY)&, + 403 (AY)Es + & {Y = nv(A¢Y>¢sv} . (5.14)
v=1

Then we have A = 0 and similarly, A = 0. So it follows that

3
AY =) 0 (AV)E, = (A&, Y)E + g(AEs, Y)Es.

v=1

Then for ¢Y € ©, we know that

APY = g(A&, pY)Er + g(A3, PY)Ss. (5.15)
From this, applying ¢ and ¢, respectively, we have

PAPY = —g(A&2, ¢Y)&3 + g(AS,, Y)E,

and

D1APY = g(A&, dY)E3 — g(A&3, PY)Es.

From these formulas, together with (5.13), we have

D1PAY = m(AY)E; + n3(AY)Es.
Then by applying ¢ we have

PAY = n3(AY)&E — n2(AY)Es. (5.16)
By comparing (5.15) and (5.16), and using (5.11), we know that
Ap = —pA (5.17)

on the distribution ©,. From this and (5.4) it follows that for any Y € D5,
0=¢Y +¢1Y = ApAY = —A’¢Y.
So ¢Y € D, gives A’Y = 0. Then from this and (5.5), and using ¢Y = —¢,Y we have
612(AY)&; + 613(AY)E3 — 4p19AY = 0,
where we have used that ¢p¢1AY = ¢p1pAY + 1n1(AY)E = ¢p1¢pAY. From this, taking an inner product with & and using the
formulas in Section 2, we have
n2(AY) = 0.

Similarly, we can assert that n3(AY) = Oforany Y € ©,. So combining this with the fact that n,(AY) = Oforanyv = 1, 2, 3,
and any Y € ©;, we have proved that n,(AY) = Oforany Y € ©,v = 1, 2, 3. Accordingly, we have g(AD, ©+) = 0 for
Hopf hypersurfaces M in G,(C™+?) with commuting Ricci tensor and its Reeb vector £ € ©*. Then, by virtue of Theorem A
we kn0\2/v that M is locally congruent to real hypersurfaces of type (A), that is, a tube over a totally geodesic G,(C™"1) in
G, (C™2), 0O

We introduce in Theorem A, relating to this kind of hypersurface, another proposition due to Berndt and the present
author [6] as follows:

Proposition C. Let M be a connected real hypersurface of G,(C™*?). Suppose that AD C ©, Af = £, and £ is tangent to D*.
Let J; € J be the almost Hermitian structure such that [N = J{N. Then M has three (if r = m /2) or four (otherwise) distinct
constant principal curvatures

a:aizx/gcot(«/gr>, ajzakzx/icot(\/ir>, k=—«/§tan<«/§r>, u=20
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with somer € (0, n/\/g). The corresponding multiplicities are
m(a;) = 1, m(aj) = 2, m(A) =2m—2 =m(u),
and for the corresponding eigenspaces we have
T, = RE = RJN,
Tg = C'& = C'N,
T = {XIXLHE, JX = JiX},
T, = {X|XLHE, JX = —JiX}.

In the paper [7] due to Berndt and the present author we have given a characterization of real hypersurfaces of type (A)
in Theorem A when the shape operator A of M in G, (C™*?) commutes with the structure tensor ¢, which is equivalent to the
condition that the Reeb flow on M is isometric, thatis Lz g = 0, where £ (resp. g) denotes the Lie derivative (resp. the induced
Riemannian metric) of M in the direction of the Reeb vector field £. Namely, Berndt and the present author [7] proved the
following:

Theorem D. Let M be a connected orientable real hypersurface in G, (C™+2), m > 3. Then the Reeb flow on M is isometric if and
only if M is an open part of a tube around some totally geodesic G,(C™1) in G,(C™*2).

Now let us check for the real hypersurfaces of type (A) mentioned in Proposition C and Theorem D whether they satisfy
a commuting Ricci tensor, that is, S¢ = ¢S. Then by Theorem D for the commuting shape operator, that is, Ap = ¢A, the
commuting Ricci tensor S¢p = ¢S implies

—3m(@Y)E — 313(9Y)E3 + $10°Y — n($20Y)s§ — n($30Y) 36

3
=—3) ()& + ¢r1dY — n($2Y)hot — 1(¢3Y)hsé. (5.18)

v=1

Now let us check case by case whether the two sides in (5.18) are equal to each other as follows:
Case1.Y =& =&4.
In this case it can be easily checked that the two sides are equal to each other.
Case2.Y = &, &;.
Then by putting X = &, in (5.18) we have

=3 ($&2)E3 — 152 + 12(52) 928 + 13(52) 38 = =398, + PP19Er — n(P362)P3é,

which implies that both sides are equal to &;.
Case3.Y €T, © T,,.
In such a case we have immediately S¢Y = ¢SY.

Remark 5.1. In the paper due to Pérez and the author [13] we have proved that there do not exist any real hypersurfaces
M in G,(C™*2) with parallel and commuting Ricci tensor. Such a geometric condition is stronger than our commuting Ricci
tensor in this paper. In the paper [12] we also have proved the non-existence property for real hypersurfaces in G, (C™+?)
with commuting shape operator, that is, A¢; = ¢:A, i = 1,2, 3.
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