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In this paper, firstwe introduce the full expression for the Ricci tensor of a real hypersurface
M in complex two-plane Grassmannians G2(Cm+2) from the equation of Gauss. Next we
prove that a Hopf hypersurface in complex two-plane Grassmannians G2(Cm+2) with
commuting Ricci tensor is locally congruent to a tube of radius r over a totally geodesic
G2(Cm+1). Finally it can be verified that there do not exist any Hopf Einstein hypersurfaces
in G2(Cm+2).
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0. Introduction

In the geometry of real hypersurfaces in complex space formsMm(c) or in quaternionic space forms Qm(c) Kimura [1,2]
(resp. Pérez and the author [3]) considered real hypersurfaces inMn(c) (resp. in Qm(c)) with commuting Ricci tensor, that is,
Sφ = φS (resp. Sφi = φiS, i = 1, 2, 3) where S and φ (resp. S and φi, i = 1, 2, 3) denote the Ricci tensor and the structure
tensor of real hypersurfaces inMm(c) (resp. in Qm(c)).
In [1,2], Kimura has classified that a Hopf hypersurface M in complex projective space Pm(C) with commuting Ricci

tensor is locally congruent of type (A), to a tube over a totally geodesic Pk(C), of type (B), to a tube over a complex quadric
Qm−1, cot2 2r = m− 2, of type (C), to a tube over P1(C)× P(m−1)/2(C), cot2 2r = 1

m−2 wherem is odd, of type (D), to a tube
over a complex two-plane Grassmannian G2(C5), cot2 2r = 3

5 withm = 9, of type (E), to a tube over a Hermitian symmetric
space SO(10)/U(5), cot2 2r = 5

9 withm = 15.
The notion of Hopf hypersurfaces means that the structure vector ξ defined by ξ = −JN satisfies Aξ = αξ , where J

denotes a Kähler structure of Pm(C),N and A a unit normal and the shape operator ofM in Pm(C) (see [4]).
On the other hand, for in a quaternionic projective spaceQPm Pérez and the author [3] have classified real hypersurfaces in

QPm with commuting Ricci tensor Sφi = φiS, i = 1, 2, 3, where S (resp. φi) denotes that the Ricci tensor (resp. the structure
tensor) ofM inQPm is locally congruent of type A1,A2, that is, to a tube overQPkwith radius 0 < r < π

2 , k ∈ {0, . . . ,m−1}.
The almost contact structure vector fields {ξ1, ξ2, ξ3} are defined by ξi = −JiN, i = 1, 2, 3, where Ji, i = 1, 2, 3, denote
a quaternionic Kähler structure of QPm and N a unit normal field of M in QPm. Moreover, Pérez and the present author [5]
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have considered the notion of∇ξiR = 0, i = 1, 2, 3, where R denotes the curvature tensor of a real hypersurfaceM inQPm,
and proved thatM is locally congruent to a tube of radius π4 over QPk.
Now let us consider a complex two-plane Grassmannian G2(Cm+2)which consists of all complex two-dimensional linear

subspaces in Cm+2. Then the situation for real hypersurfaces in G2(Cm+2)with commuting Ricci tensor is not so simple and
will be quite different from the cases mentioned above.
So in this paper we consider a real hypersurface M in complex two-plane Grassmannians G2(Cm+2) with commuting

Ricci tensor, Sφ = φS, where S and φ denote the Ricci tensor and the structure tensor of M in G2(Cm+2), respectively.
The curvature tensor R(X, Y )Z of M in G2(Cm+2) can be derived from the curvature tensor R̄(X, Y )Z of complex two-plane
Grassmannians G2(Cm+2) for any vector fields X, Y and Z on M . Then by contraction and using the geometric structure
JJi = JiJ, i = 1, 2, 3, connecting the Kähler structure J and the quaternionic Kähler structure Ji, i = 1, 2, 3, we can derive
the Ricci tensor S given by (see Section 3)

g(SX, Y ) =
4m−1∑
i=1

g(R(ei, X)Y , ei),

where {e1, . . . , e4m−1} denotes a basis of the tangent space TxM ofM, x ∈ M , in G2(Cm+2).
The ambient spaceG2(Cm+2) is known to be the unique compact irreducible Riemannian symmetric space equippedwith

both a Kähler structure J and a quaternionic Kähler structure J not containing J (see [6,7]). So, for in G2(Cm+2)we have two
natural geometrical conditions for real hypersurfaces: that [ξ ] = Span {ξ} or D⊥ = Span {ξ1, ξ2, ξ3} is invariant under the
shape operator. By using such kinds of geometric conditions Berndt and the present author [6] have proved the following:

Theorem A. Let M be a connected real hypersurface in G2(Cm+2),m ≥ 3. Then both [ξ ] and D⊥ are invariant under the shape
operator of M if and only if
(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2), or
(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic QPn in G2(Cm+2).

When the structure vector field ξ of M in G2(Cm+2) is invariant under the shape operator A,M is said to be a Hopf
hypersurface. In such a case the integral curves of the structure vector field ξ are geodesics (see [7]). The flow generated
by the integral curves of the structure vector field ξ for Hopf hypersurfaces in G2(Cm+2) is said to be a geodesic Reeb flow.
On the other hand, we say that the Reeb vector field is Killing, that is,Lξg = 0 for the Lie derivative along the direction

of the structure vector field ξ , which gives a characterization of real hypersurfaces of type (A) in Theorem A. Moreover, it
was verified in [8] thatLξg = 0 is equivalent toLξA = 0 for the shape operator A ofM in G2(Cm+2).
When the Ricci tensor S of M in G2(Cm+2) commutes with the structure tensor φ, we say that M has a commuting Ricci

tensor. In the proof of Theorem A we have proved that the one-dimensional distribution [ξ ] belongs to either the three-
dimensional distribution D⊥ or to the orthogonal complement D such that TxM = D ⊕ D⊥. The case (A) in Theorem A is
just the case where the one-dimensional distribution [ξ ] belongs to the distributionD⊥. Of course they satisfy that the Reeb
vector ξ is Killing, that is, the structure tensor φ commutes with the shape operator A. But it is not difficult to check that
the Ricci tensor S of real hypersurfaces of type (B) mentioned in Theorem A cannot commute with the structure tensor φ.
Moreover, in Section 5 we can check that any real hypersurface of type (A) in Theorem A has a commuting Ricci tensor.
In this paper we consider such a converse problem and want to give a complete classification of real hypersurfaces in

G2(Cm+2) satisfying Sφ = φS as follows:

Theorem. Let M be a Hopf hypersurface in G2(Cm+2)with commuting Ricci tensor, m ≥ 3. Then M is locally congruent to a tube
of radius r over a totally geodesic G2(Cm+1) in G2(Cm+2).

On the other hand, it is known that the Ricci tensor S of an Einstein hypersurface M in G2(Cm+2) is given by S = ag for
a constant a and a Riemannian metric g defined on M . Naturally the Ricci tensor S commutes with the structure tensor φ,
that is, Sφ = φS. So by virtue of our theorem mentioned above it becomes a hypersurface of type (A) in G2(Cm+2). But by
Proposition C in Section 5 it can be easily checked that any tubes of radius r over a totally geodesic G2(Cm+1) in G2(Cm+2)
cannot be Einstein (see [9]). Then, as an application of our theorem in the direction of mathematical physics, we assert the
following:

Corollary. There do not exist any Hopf Einstein hypersurfaces in G2(Cm+2),m ≥ 3.
In Section 2we recall the Riemannian geometry of complex two-plane Grassmannians G2(Cm+2) and in Section 3wewill

show some fundamental properties of real hypersurfaces in G2(Cm+2). The formula for the Ricci tensor S and its covariant
derivative∇S will be shown explicitly in this section. In Sections 4 and 5 we will give a complete proof of the main theorem
according to the geodesic Reeb flow satisfying ξ ∈ D or the geodesic Reeb flow satisfying ξ ∈ D⊥.

1. Riemannian geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2); for details we refer the reader to [10,6,7,11]. By G2(Cm+2)
we denote the set of all complex two-dimensional linear subspaces in Cm+2. The special unitary group G = SU(m+ 2) acts
transitively on G2(Cm+2)with stabilizer isomorphic to K = S(U(2)×U(m)) ⊂ G. Then G2(Cm+2) can be identified with the
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homogeneous space G/K , which we equip with the unique analytic structure for which the natural action of G on G2(Cm+2)
becomes analytic. Denote by g and k the Lie algebra of G and K , respectively, and by m the orthogonal complement of k in g

with respect to the Cartan–Killing form B of g. Then g = k⊕ m is an Ad(K)-invariant reductive decomposition of g. We put
o = eK and identify ToG2(Cm+2)withm in the usual manner. Since B is negative definite on g, its negative restricted tom×m

yields a positive definite inner product on m. By Ad(K)-invariance of B this inner product can be extended to a G-invariant
Riemannian metric g on G2(Cm+2). In this way G2(Cm+2) becomes a Riemannian homogeneous space, even a Riemannian
symmetric space. For computational reasonswenormalize g such that themaximal sectional curvature of (G2(Cm+2), g) is 8.
The Lie algebra k has the direct sum decomposition k = su(m)⊕ su(2)⊕ R, whereR is the center of k. Viewing k as the

holonomy algebra ofG2(Cm+2), the centerR induces a Kähler structure J and the su(2) part a quaternionic Kähler structure J

on G2(Cm+2). If J1 is any almost Hermitian structure in J, then JJ1 = J1J , and JJ1 is a symmetric endomorphismwith (JJ1)2 = I
and tr(JJ1) = 0. This fact will be used in later sections.
A canonical local basis J1, J2, J3 of J consists of three local almost Hermitian structures Jν in J such that Jν Jν+1 =

Jν+2 = −Jν+1Jν , where the index is taken modulus 3. Since J is parallel with respect to the Riemannian connection ∇̄ of
(G2(Cm+2), g), there exist for any canonical local basis J1, J2, J3 of J three local 1-forms q1, q2, q3 such that

∇̄X Jν = qν+2(X)Jν+1 − qν+1(X)Jν+2 (1.1)

for all vector fields X on G2(Cm+2).
Let p ∈ G2(Cm+2) andW a subspace of TpG2(Cm+2). We say thatW is a quaternionic subspace of TpG2(Cm+2) if JW ⊂ W

for all J ∈ Jp. And we say that W is a totally complex subspace of TpG2(Cm+2) if there exists a one-dimensional subspace
V of Jp such that JW ⊂ W for all J ∈ V and JW ⊥ W for all J ∈ V⊥ ⊂ Jp. Here, the orthogonal complement of V in Jp is
taken with respect to the bundle metric and orientation on J for which any local oriented orthonormal frame field of J is
a canonical local basis of J. A quaternionic (resp. totally complex) submanifold of G2(Cm+2) is a submanifold all of whose
tangent spaces are quaternionic (resp. totally complex) subspaces of the corresponding tangent spaces of G2(Cm+2).
The Riemannian curvature tensor R̄ of G2(Cm+2) is locally given by

R̄(X, Y )Z = g(Y , Z)X − g(X, Z)Y + g(JY , Z)JX − g(JX, Z)JY − 2g(JX, Y )JZ +
3∑
ν=1

{g(JνY , Z)JνX − g(JνX, Z)JνY

− 2g(JνX, Y )JνZ} +
3∑
ν=1

{g(Jν JY , Z)Jν JX − g(Jν JX, Z)Jν JY }, (1.2)

where J1, J2, J3 is any canonical local basis of J.

2. Some fundamental formulas for real hypersurfaces in G2(Cm+2)

In this section we derive some fundamental formulas which will be used in the proof of our main theorem. Let M be a
real hypersurface in G2(Cm+2), that is, a submanifold in G2(Cm+2)with real codimension 1. The induced Riemannian metric
onM will also be denoted by g , and∇ denotes the Riemannian connection of (M, g). Let N be a local unit normal field ofM
and A the shape operator ofM with respect to N .
The Kähler structure J of G2(Cm+2) induces onM an almost contactmetric structure (φ, ξ, η, g). Furthermore, let J1, J2, J3

be a canonical local basis of J. Then each Jν induces an almost contact metric structure (φν, ξν, ην, g) onM . Using the above
expression (1.2) for the curvature tensor R̄, the Gauss and the Codazzi equations are respectively given by

R(X, Y )Z = g(Y , Z)X − g(X, Z)Y + g(φY , Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ

+

3∑
ν=1

{g(φνY , Z)φνX − g(φνX, Z)φνY − 2g(φνX, Y )φνZ}

+

3∑
ν=1

{g(φνφY , Z)φνφX − g(φνφX, Z)φνφY } −
3∑
ν=1

{η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY }

−

3∑
ν=1

{η(X)g(φνφY , Z)− η(Y )g(φνφX, Z)} ξν + g(AY , Z)AX − g(AX, Z)AY

and

(∇XA)Y − (∇YA)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ +
3∑
ν=1

{ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν}

+

3∑
ν=1

{ην(φX)φνφY − ην(φY )φνφX} +
3∑
ν=1

{η(X)ην(φY )− η(Y )ην(φX)} ξν,

where R denotes the curvature tensor ofM in G2(Cm+2).
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The following identities can be proved in a straightforwardmanner andwill be used frequently in subsequent calculations
(see [12,9,8,11]):

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φξν = φνξ, ην(φX) = η(φνX),
φνφν+1X = φν+2X + ην+1(X)ξν,
φν+1φνX = −φν+2X + ην(X)ξν+1.

(2.1)

Now let us put
JX = φX + η(X)N, JνX = φνX + ην(X)N

for any tangent vector X of a real hypersurface M in G2(Cm+2), where N denotes a normal vector of M in G2(Cm+2). Then
from this and the formulas (1.1) and (2.1) we have that

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ , ∇Xξ = φAX, (2.2)
∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX, (2.3)

(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX − g(AX, Y )ξν . (2.4)
Summing these formulas, we find the following:
∇X (φνξ) = ∇X (φξν)

= (∇Xφ)ξν + φ(∇Xξν)

= qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφAX − g(AX, ξ)ξν + η(ξν)AX . (2.5)
Moreover, from JJν = Jν J, ν = 1, 2, 3, it follows that

φφνX = φνφX + ην(X)ξ − η(X)ξν . (2.6)

3. Proof of main theorem

In this section let us consider a real hypersurfaceM in G2(Cm+2)with commuting Ricci tensor, that is, Sφ = φS.
Now let us contract Y and Z in the equation of Gauss in Section 2. Then the Ricci tensor S of a real hypersurface M in

G2(Cm+2) is given by

SX =
4m−1∑
i=1

R(X, ei)ei

= (4m+ 10)X − 3η(X)ξ − 3
3∑
ν=1

ην(X)ξν +
3∑
ν=1

{(Trφνφ)φνφX − (φνφ)2X}

−

3∑
ν=1

{ην(ξ)φνφX − η(X)φνφξν} −
3∑
ν=1

{(Trφνφ)η(X)− η(φνφX)}ξν + hAX − A2X, (3.1)

where h denotes the trace of the shape operator A ofM in G2(Cm+2). From the formula JJν = Jν J, Tr JJν = 0, ν = 1, 2, 3, we
calculate the following for any basis {e1, . . . , e4m−1,N} of the tangent space of G2(Cm+2):

0 = Tr JJν

=

4m−1∑
k=1

g(JJνek, ek)+ g(JJνN,N)

= Trφφν − ην(ξ)− g(JνN, JN)
= Trφφν − 2ην(ξ) (3.2)

and
(φνφ)

2X = φνφ(φφνX − ην(X)ξ + η(X)ξν)
= φν(−φνX + η(φνX)ξ)+ η(X)φν2ξ
= X − ην(X)ξν + η(φνX)φνξ + η(X){−ξ + ην(ξ)ξ}. (3.3)

Substituting (3.2) and (3.3) into (3.1), we have

SX = (4m+ 10)X − 3η(X)ξ − 3
3∑
ν=1

ην(X)ξν +
3∑
ν=1

{ην(ξ)φνφX − X − η(φνX)φνξ − η(X)ην(ξ)ξν} + hAX − A2X

= (4m+ 7)X − 3η(X)ξ − 3
3∑
ν=1

ην(X)ξν +
3∑
ν=1

{ην(ξ)φνφX − η(φνX)φνξ − η(X)ην(ξ)ξν} + hAX − A2X . (3.4)
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Now let us take a covariant derivative of Sφ = φS. This gives that

(∇Y S)φX + S(∇Yφ)X = (∇Yφ)SX + φ(∇Y S)X . (3.5)

Then the first term of (3.5) becomes

(∇Y S)φX = −3g(φAY , φX)ξ − 3
3∑
ν=1

{qν+2(Y )ην+1(φX)− qν+1(Y )ην+2(φX)+ g(φνAY , φX)}ξν

− 3
3∑
ν=1

ην(φX){qν+2(Y )ξν+1 − qν+1(Y )ξν+2 + φνAφX}

+

3∑
ν=1

[
Y (ην(ξ))φνφ2X + ην(ξ){−qν+1(Y )φν+2φ2X + qν+2(Y )φν+1φ2X

+ ην(φ
2X)AY − g(AY , φ2X)ξν} − ην(ξ)g(AY , φX)φνξ − g(φAY , φνφX)φνξ

+{qν+1(Y )η(φν+2φX)− qν+2(Y )η(φν+1φX)− ην(φX)η(AY )+ η(ξν)g(AY , φX)}φνξ

− η(φνφX){qν+2(Y )φν+1ξ − qν+1(Y )φν+2ξ + φνφAY − η(AY )ξν + η(ξν)AY } − g(φAY , φX)ην(ξ)ξν

]
+ (Yh)AφX + h(∇YA)φX − (∇YA2)φX .

The second term of (3.5) becomes

S(∇Yφ)X = η(X)

[
(4m+ 7)AY − 3η(AY )ξ − 3

3∑
ν=1

ην(AY )ξν +
3∑
ν=1

{ην(ξ)φνφAY − η(φνAY )φνξ − η(AY )ην(ξ)ξν}

+ hA2Y − A3Y

]
− g(AY , X)

[
(4m+ 7)ξ − 3ξ − 4

3∑
ν=1

ην(ξ)ξν + hAξ − A2ξ

]
.

The first term of the right side in (3.5) becomes

(∇Yφ)SX = η(SX)AY − g(AY , SX)ξ ,

and the second term of the right side in (3.5) is given by

φ(∇Y S)X = −3η(X)φ2AY − 3
3∑
ν=1

{qν+2(Y )ην+1(X)− qν+1(Y )ην+2(X)+ g(φνAY , φX)}φξν

− 3
3∑
ν=1

ην(X){qν+2(Y )φξν+1 − qν+1(Y )φξν+2 + φφνAY }

+

3∑
ν=1

[
Y (ην(ξ))φφνφX + ην(ξ){−qν+1(Y )φφν+2φX + qν+2(Y )φφν+1φX

+ ην(φX)φAY − g(AY , φX)φξν} + ην(ξ){η(X)φφνAY − g(AY , X)φφνξ}
− g(φAY , φνX)φφνξ + {qν+1(Y )η(φν+2X)− qν+2(Y )η(φν+1X)− ην(X)η(AY )
+ η(ξν)g(AY , X)}φφνξ − η(φνX){qν+2(Y )φφν+1ξ − qν+1(Y )φφν+2ξ + φφνφAY

− η(AY )φξν + η(ξν)φAY } − g(φAY , X)ην(ξ)φξν − η(X)Y (ην(ξ))φξν − η(X)ην(ξ)φ∇Y ξν

]
+ (Yh)φAX + hφ(∇YA)X − φ(∇YA2)X .

Putting X = ξ into (3.5) and using that the structure vector ξ is principal, that is, Aξ = αξ , then we have

S(∇Yφ)ξ =

[
(4m+ 7)AY − 3η(AY )ξ − 3

3∑
ν=1

ην(AY )ξν

+

3∑
ν=1

{ην(ξ)φνφAY − η(φνφAY )φνξ − αη(Y )ην(ξ)ξν} + hA2Y − A3Y

]

−αη(Y )

[
4(m+ 1)ξ − 4

3∑
ν=1

ην(ξ)ξν + (αh− α2)ξ

]
.
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Moreover, the right side of (3.5) becomes

(∇Yφ)Sξ + φ(∇Y S)ξ = η(Sξ)AY − g(AY , Sξ)ξ + φ(∇Y S)ξ

=

[
{4(m+ 1)+ hα − α2} − 4

3∑
ν=1

ην(ξ)
2

]
AY − 3η(X)φ2AY

−

{
{4(m+ 1)α + hα2 − α3}η(Y )− 4

3∑
ν=1

ην(ξ)ην(AY )

}
ξ

− 3
3∑
ν=1

{qν+2(Y )ην+1(ξ)− qν+1(Y )ην+2(ξ)+ ην(φAY )}φξν

− 3
3∑
ν=1

ην(ξ){qν+2(Y )φξν+1 − qν+1(Y )φξν+2 + φφνAY }

+

3∑
ν=1

[
ην(ξ){φφνAY − αη(Y )φ2ξν} − g(φAY , φξν)φ2ξν

− Y (ην(ξ))φξν − ην(ξ)φ∇Y ξν

]
+ hφ(∇YA)ξ − φ(∇YA2)ξ .

From this, putting Y = ξ into L = R, then it follows that

0 =
3∑
ν=1

{qν+2(ξ)ην+1(ξ)− qν+1(ξ)ην+2(ξ)}φξν +
3∑
ν=1

ην(ξ){qν+2(ξ)φξν+1 − qν+1(ξ)φξν+2 + αφ2ξν}.

Now in order to show that ξ belongs to either the distributionD or to the distributionD⊥, let us assume that ξ = X1 + X2
for some X1 ∈ D and X2 ∈ D⊥. Then it follows that

0 =
3∑
ν=1

{qν+2(ξ)ην+1(ξ)− qν+1(ξ)ην+2(ξ)} (φνX1 + φνX2)

+

3∑
ν=1

ην(ξ)

{
qν+2(ξ)(φν+1X1 + φν+1X2)− qν+1(ξ)(φν+2X1 + φν+2X2)− αξν + αη(ξν)(X1 + X2)

}
. (3.6)

Then by comparing theD andD⊥ components of (3.6), we have respectively

0 =
3∑
ν=1

{qν+2(ξ)ην+1(ξ)− qν+1(ξ)ην+2(ξ)}φνX1 + α
3∑
ν=1

ην(ξ)
2X1

+

3∑
ν=1

ην(ξ){qν+2(ξ)φν+1X1 − qν+1(ξ)φν+2X1}, (3.7)

0 =
3∑
ν=1

{qν+2(ξ)ην+1(ξ)− qν+1(ξ)ην+2(ξ)}φνX2

+

3∑
ν=1

ην(ξ){qν+2(ξ)φν+1X2 − qν+1(ξ)φν+2X2 − αξν + αη(ξν)X2}. (3.8)

Taking an inner product (3.7) with X1, we have

α

3∑
ν=1

ην(ξ)
2
= 0. (3.9)

Then α = 0 or ην(ξ) = 0 for ν = 1, 2, 3. So for a non-vanishing geodesic Reeb flow we have ην(ξ) = 0, ν = 1, 2, 3. This
means that ξ ∈ D, which gives a contradiction to our assumption ξ = X1 + X2. Including this, we are able to assert the
following:

Lemma 3.1. Let M be a Hopf hypersurface in G2(Cm+2) with commuting Ricci tensor. Then the Reeb vector ξ belongs either to
the distributionD or to the distributionD⊥.
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Proof. When the geodesic Reeb flow is non-vanishing, that is α 6= 0, (3.9) gives ξ ∈ D. When the geodesic Reeb flow is
vanishing, we differentiate Aξ = 0. Then by Berndt and Suh [7] we know that

3∑
ν=1

ην(ξ)ην(φY ) = 0.

From this, on replacing Y by φY , it follows that
3∑
ν=1

η2ν(ξ)η(Y ) = 0.

So if there are some Y ∈ D such that η(Y ) 6= 0, then ην(ξ) = 0 for ν = 1, 2, 3. This means that ξ ∈ D. If η(Y ) = 0 for any
Y ∈ D, then we know that ξ ∈ D⊥. �

4. Real hypersurfaces with geodesic Reeb flow satisfying ξ ∈ D

Let us consider a Hopf hypersurfaceM in G2(Cm+2)with commuting Ricci tensor, that is, Sφ = φS and ξ ∈ D. From this,
differentiating, we have

(∇Y S)φX + S(∇Yφ)X = (∇Yφ)SX + φ(∇Y S)X . (4.1)
In this section let us show that the distributionD ofM in G2(Cm+2) satisfies g(AD,D⊥) = 0 for the case ξ ∈ D.
Now using ξ ∈ D in (4.1), the first term becomes

(∇Y S)φX = −3g(φAY , φX)ξ − 3
3∑
ν=1

{qν+2(Y )ην+1(φX)− qν+1(Y )ην+2(φX)+ g(φνAY , φX)}ξν

− 3
3∑
ν=1

ην(φX){qν+2(Y )ξν+1 − qν+1(Y )ξν+2 + φνAφX}

+

3∑
ν=1

[
{αη(Y )η(φνX)− η(X)ην(φAY )− g(AY , φνX)}φνξ

−{qν+1(Y )ην+2(X)− qν+2(Y )ην+1(X)+ αην(φX)η(Y )}φνξ

+ ην(X){qν+2(Y )φν+1ξ − qν+1(Y )φν+2ξ + φνφAY − αη(Y )ξν}

]
+ (Yh)AφX + h(∇YA)φX − (∇YA2)φX .

The second term of (4.1) becomes
S(∇Yφ)X = η(X)S(AY )− g(AY , X)Sξ

= η(X)

[
(4m+ 7)AY − 3αη(Y )ξ − 3

3∑
ν=1

ην(AY )ξν −
3∑
ν=1

η(φνAY )φνξ + hA2Y − A3Y

]
− g(AY , X)

{
4(m+ 1)ξ + (hα − α2)ξ

}
.

The first term of the right side in (4.1) becomes
(∇Yφ)SX = η(SX)AY − g(AY , SX)ξ

= 4(m+ 1)η(X)AY + (hα − α2)η(X)AY − g(AY , SX)ξ ,
and the second term of the right side in (4.1) is given by

φ(∇Y S)X = −3η(X)φ2AY − 3
3∑
ν=1

{qν+2(Y )ην+1(X)− qν+1(Y )ην+2(X)+ g(φνAY , X)}φξν

− 3
3∑
ν=1

ην(X){qν+2(Y )φξν+1 − qν+1(Y )φξν+2 + φφνAY } +
3∑
ν=1

g(φAY , φνX)ξν

−

3∑
ν=1

{qν+1(Y )η(φν+2X)− qν+2(Y )η(φν+1X)− αην(X)η(Y )}ξν

+

3∑
ν=1

η(φνX) [{qν+2(Y )ξν+1 − qν+1(Y )ξν+2} − φφνφAY + αη(Y )φξν ]

+ (Yh)φAX + hφ(∇YA)X − φ(∇YA2)X .
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Substituting these formulas into (4.1) and putting X = ξµ into the equation obtained, and next using that the structure
vector ξ is inD and (2.1), we have

− 3g(AY , ξµ)ξ + (Yh)Aφξµ + h(∇YA)φξµ − (∇YA2)φξµ + {4(m+ 1)+ (h− α)α}g(AY , ξµ)ξ

= −g(AY , Sξµ)ξ − 4
3∑
ν=1

{
qν+2(Y )ην+1(ξµ)− qν+1(Y )ην+2(ξµ)+ g(φνAY , ξµ)

}
φξµ

− 4
{
qµ+2(Y )φξµ+1 − qµ+1(Y )φξµ+2 + φφµAY

}
+ 4

3∑
ν=1

g(φAY , φνξµ)ξν

+αη(Y )ξµ + (Yh)φAξµ + hφ(∇YA)ξµ − φ(∇YA2)ξµ. (4.2)

Putting X = ξµ into (3.4) and using ξ ∈ D, we have

Sξµ = (4m+ 7)ξµ − 3ξµ + hAξµ − A2ξµ.

So the first term of the right side of (4.2) becomes

−g(AY , Sξµ)ξ = −4(m+ 1)g(AY , ξµ)ξ − hg(Aξµ, AY )ξ + g(A2ξµ, AY )ξ .

Then substituting this into (4.2), we have

4
3∑
ν=1

{qν+2(Y )ην+1(ξµ)− qν+1(Y )ην+2(ξµ)+ g(φνAY , ξµ)}φξν

+ 4{qµ+2(Y )φξµ+1 − qµ+1(Y )φξµ+2 + φφµAY }

+ {(8m+ 5)+ (h− α)α}g(AY , ξµ)ξ + hg(Aξµ, AY )ξ − g(A2ξµ, AY )ξ

− 4
3∑
ν=1

g(φAY , φνξµ)ξν − αη(Y )ξµ + (Yh)(Aφ − φA)ξµ

+ h{(∇YA)φ − φ(∇YA)}ξµ − {(∇YA2)φ − φ(∇YA2)}ξµ
= 0. (4.3)

From this, taking the inner product with ξ , we have

{(8m+ 5)+ (h− α)α}g(AY , ξµ)+ hg(Aξµ, AY )− g(A2ξµ, AY )

+ hg((∇YA)φξµ, ξ)− g((∇YA2)φξµ, ξ) = 0. (4.4)

On the other hand, we have

g((∇YA)φξµ, ξ) = αg(φAY , φξµ)− g(AφAY , φξµ),

g((∇YA2)φξµ, ξ) = α2g(φAY , φξµ)− g(A2φAY , φξµ).

From this, together with (4.4), we have

{(8m+ 5)+ 2(h− α)α}Aξµ + hA2ξµ − A3ξµ + hAφAφξµ − AφA2φξµ = 0. (4.5)

Now putting X = ξ in (4.1) and using ξ ∈ D, then we have[
(4m+ 7)AY − 3αη(Y )ξ − 3

3∑
ν=1

ην(AY )ξν −
3∑
ν=1

ην(φAY )φνξ + hA2Y − A3Y

]
−αη(Y ) {4(m+ 1)ξ + α(h− α)ξ}
=
[
{4(m+ 1)+ (h− α)α}AY − {4(m+ 1)α + (h− α)α2}η(Y )ξ

]
+ (3− αh+ α2)AY

− (3α − α2h+ α3)η(Y )ξ − 3
3∑
ν=1

ην(φAY )φξν +
3∑
ν=1

ην(AY )ξν − hφAφAY + φA2φAY . (4.6)

From this, putting Y = ξµ and also using ξ ∈ D, we have

2(4m+ 7)Aξµ − 2
3∑
ν=1

ην(Aξµ)ξν − 4
3∑
ν=1

ην(φAξµ)φνξ + hA2ξµ − A3ξµ − hφAφAξµ + φA2φAξµ = 0. (4.7)



Author's personal copy

1800 Y.J. Suh / Journal of Geometry and Physics 60 (2010) 1792–1805

On the other hand, we have assumed that M has a commuting Ricci tensor, that is Sφ = φS. From this, together with
ξ ∈ D, we have

hAφX − A2φX = hφAX − φA2X − 4
3∑
ν=1

ην(X)φξν + 4
3∑
ν=1

ην(φX)ξν . (4.8)

Then by putting X = Aξµ into (4.8) we have

hAφAξµ − A2φAξµ = hφA2ξµ − φA3ξµ − 4
3∑
ν=1

ην(Aξµ)φξν + 4
3∑
ν=1

ην(φAξµ)ξν .

From this, on applying φ to the left side we know that

hφAφAξµ − φA2φAξµ = −hA2ξµ + A3ξµ + 4
3∑
ν=1

ην(Aξµ)ξν + 4
3∑
ν=1

ην(φAξµ)φξν . (4.9)

Also, by putting X = ξµ into (4.8) we have

hAφξµ − A2φξµ = hφAξµ − φA2ξµ − 4φξµ − 4ξµ. (4.10)

From this, on applying Aφ to the left side and using that ξ is principal we have

hAφAφξµ − AφA2φξµ = −hA2ξµ + A3ξµ + 4Aξµ − 4Aφξµ. (4.11)

Then substituting (4.11) into (4.5), we have

Aφξµ = βAξµ, (4.12)

where we have put β = 1
4 {(8m+ 9)+ 2(h− α)α}.

On the other hand, substituting (4.9) into (4.7), we have

hA2ξµ − A3ξµ = 3
3∑
ν=1

ην(Aξµ)ξν + 4
3∑
ν=1

ην(φAξµ)φνξ − (4m+ 7)Aξµ. (4.13)

Now substituting (4.12) into (4.10), we have

β(hAξµ − A2ξµ) = hφAξµ − φA2ξµ − 4φξµ − 4ξµ. (4.14)

Then by applying the structure tensor φ to the left side of (4.14), we have

β(hφAξµ − φA2ξµ) = −(hAξµ − A2ξµ)+ 4ξµ − 4φξµ.

From this, together with (4.14), on applying the function β to both sides, we have

β2(hAξµ − A2ξµ) = β(hφAξµ − φA2ξµ)− 4βφξµ − 4βξµ
= −(hAξµ − A2ξµ)+ 4ξµ − 4φξµ − 4βφξµ − 4βξµ.

Then we put this as follows:

hAξµ − A2ξµ = λξµ + µφξµ, (4.15)

where λ (resp. µ) denotes −4(β−1)
β2+1

(
resp. µ = −4(β+1)

β2+1

)
. From this, together with (4.12), we have

hA2ξµ − A3ξµ = λAξµ + µAφξµ = (λ+ µβ)Aξµ. (4.16)

On the other hand, by (4.13) the left side of (4.16) becomes

(λ+ µβ + 4m+ 7)Aξµ = 3
3∑
ν=1

ην(Aξµ)ξν + 4
3∑
ν=1

ην(φAξµ)φνξ . (4.17)

Then (4.17) gives the following for ξ ∈ D:

(λ+ µβ + 4m+ 7)g(Aξµ, φδξ) = 4
3∑
ν=1

ην(φAξµ)g(φνξ, φδξ)

= 4ηδ(φAξµ) = −4g(Aξµ, φξδ),

which means that g(Aφδξ, ξµ) = 0, because λ + µβ + 4m + 11 > 0. Then (4.17), together with λ + µβ + 4m + 7 > o,
gives g(AD,D⊥) = 0. Then by Theorem A we know that M is locally congruent of type (B), that is, to a tube over a totally
real and totally geodesic QPn,m = 2n, in G2(Cm+2). Concerned with such a tube, we are able to recall a proposition given
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by Berndt and the present author [6] as follows:

Proposition B. Let M be a connected real hypersurface of G2(Cm+2). Suppose that AD ⊂ D, Aξ = αξ , and ξ is tangent to D.
Then the quaternionic dimension m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant principal curvatures:

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ ), m(λ) = 4n− 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ, Tβ = JJξ, Tγ = Jξ, Tλ, Tµ,

where

Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

Now it remains to check whether the Ricci tensor for real hypersurfaces of type (B) in Theorem A is commuting or not.
So let us suppose that the Ricci tensor S of type (B) is commuting, that is Sφ = φS. Then this gives (4.8). So if we consider
an eigenvector X ∈ Tλ, by Proposition B we know that φX ∈ Tµ. Then applying such a situation to (4.8), we have

(λ− µ)(h− λ− µ) = 0,

where the function h denotes the trace of the shape operator A ofM in G2(Cm+2).
Since λ− µ 6= 0, we know that

h = λ+ µ = cot r − tan r = 2 cot 2r.

By Proposition B, we also know that

h = −2 tan 2r + 6 cot 2r + (4n− 4)(cot r − tan r).

Then by comparing two formulas for the function hwe know that

cot2 2r =
1

2(2n− 1)
. (4.18)

On the other hand, by putting X = ξµ, µ = 1, 2, 3, into (4.8) we have

φµξ + hAφξµ − A2φξµ = −3φξµ + hφAξµ − φA2ξµ.

In this formula, if we consider an eigenvector ξµ ∈ Tβ , then φξµ ∈ Tγ , Aφξµ = 0, φAξµ = 2 cot 2rφξµ, and φA2ξµ =
(2 cot 2r)2φξµ. So it follows that

(4 cot2 2r − 2h cot 2r + 4)φµξ = 0,

where the trace h is given by h = −2 tan 2r + 2(4n− 1) cot 2r . Then substituting this, we have another formula:

cot2 2r =
1

2n− 1
. (4.19)

Then from (4.18) and (4.19)we have a contradiction. Sowe have shown that there do not exist any real hypersurfaces of type
(B) satisfying Sφ = φS. Accordingly, we have proved that no real hypersurface in G2(Cm+2) with commuting Ricci tensor
can exist for the case ξ ∈ D.

5. Real hypersurfaces with geodesic Reeb flow satisfying ξ ∈ D⊥

Now let us consider a Hopf hypersurfaceM in G2(Cm+2) with commuting Ricci tensor and ξ ∈ D⊥. Now differentiating
Sφ = φS gives

(∇Y S)φX + S(∇Yφ)X = (∇Yφ)SX + φ(∇Y S)X .

In this section by Lemma 3.1 we only discuss the geodesic Reeb flow ξ belonging to the distribution D⊥. Since we have
assumed that ξ ∈ D⊥ = Span{ξ1, ξ2, ξ3}, there exists a Hermitian structure J1 ∈ J such that JN = J1N , that is, ξ = ξ1. Then
it follows that

φξ2 = φ2ξ = φ2ξ1 = −ξ3, φξ3 = φ3ξ1 = −ξ2. (5.1)
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From this, together with the expression for (3.4) and ξ ∈ D⊥, we have

(4m+ 1)g(AX, Y )ξ − 3 [{q3(Y )η3(X)+ q2(Y )η2(X)}ξ1 − q1(Y )η2(X)ξ2 − q1(Y )η3(X)ξ3]+ 2η(X)η2(AY )ξ2

+ 2η(X)η3(AY )ξ3 +
3∑
ν=1

ην(X)φνφAY + (Yh)AφX + h(∇YA)φX − (∇YA2)φX + η(X){hA2Y − A3Y }

= {−g(AY , SX)− η3(X)η3(AY )− η2(X)η2(AY )}ξ + 4 [g(φ2AY , X)ξ3 − g(φ3AY , X)ξ2]− 3
3∑
ν=1

ην(X)φφνAY

+ 4
3∑
ν=1

g(φAY , φνX)ξν + η3(X)φ2AY − η2(X)φ3AY + (Yh)φAX + hφ(∇YA)X − φ(∇YA2)X . (5.2)

Now putting X = ξ in (5.2), we have

(4m+ 1)g(Aξ, Y )ξ + 2η2(AY )ξ2 + 2η3(AY )ξ3 + φ1φAY + hA2Y − A3Y
= −g(AY , Sξ)ξ + 4 {g(φ2AY , ξ)ξ3 − g(φ3AY , ξ)ξ2} − 3φφ1AY + 4g(φAY , φ2ξ)ξ2
+ 4g(φAY , φ3ξ)ξ3 + hφ(∇YA)ξ − φ(∇YA2)ξ .

From this, if we use the following formulas:

Sξ = 4(m+ 1)ξ − 4
3∑
ν=1

ην(ξ)ξν + hAξ − A2ξ = (4m+ hα − α2)ξ

and

g(AY , Sξ) = α(4m+ hα − α2)η(Y ),

then it follows that

φ1φAY + hA2Y − A3Y = 6η2(AY )ξ2 + 6η3(AY )ξ3 − hφAφAY + φA2φAY − 3φφ1AY . (5.3)

On the other hand, by the equation of Codazzi in [6] (see page 6), we have

AφAY = φY +
3∑
ν=1

{ην(Y )φξν + ην(φY )ξν + ην(ξ)φνY − 2η(Y )ην(ξ)φξν − 2ην(ξ)ην(φY )ξ} + α(Aφ + φA)Y

= φY + φ1Y + η2(Y )φξ2 + η3(Y )φξ3 + η2(φY )ξ2 + η3(φY )ξ3 + α(Aφ + φA)Y . (5.4)

So for any Y ∈ D, (5.4) gives that AφAY = φY + φ1Y + α(Aφ + φA)Y . This implies

φA2φAY = φA(AφAY ) = φA(φY + φ1Y )
= φAφY + φAφ1Y + αφA(Aφ + φA)Y .

From this, together with (5.3), it follows that

φ1φAY + hA2Y − A3Y = 6η2(AY )ξ2 + 6η3(AY )ξ3 − h(−Y + φφ1Y )− hαφ(Aφ + φA)Y + φAφY
+φAφ1Y − 3φφ1AY + αφA(Aφ + φA)Y . (5.5)

On the other hand, we calculate the following:

SφY = (4m+ 7)φY − 3η2(φY )ξ2 − 3η3(φY )ξ3 + φ1φ2Y − η(φ2φY )φ2ξ − η(φ3φY )φ3ξ + hAφY − A2φY ,

φSY = (4m+ 7)φY − 3
3∑
ν=1

ην(Y )φξν + φφ1φY − η(φ2Y )φ2ξ − η(φ3Y )φ3ξ + hφAY − φA2Y .

So for any X ∈ D the condition Sφ = φS implies that

−φ1Y + hAφY − A2φY = φφ1φY + hφAY − φA2Y .

Then by replacing Y by φY for Y ∈ Dwe have

hA2Y − A3Y = −Aφ1φY + Aφφ1Y − hAφAφY + AφA2φY . (5.6)

Now by using (5.4) for Y ∈ D, the terms in the right side become respectively

AφAφY = φ2Y + φ1φY + α(Aφ + φA)Y
= −Y + φ1φY + α(Aφ + φA)φY
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and

AφA2φY = φAφY + φ1AφY + η2(AφY )φξ2 + η3(AφY )φξ3 + η2(φAφY )ξ2 + η3(φAφY )ξ3 + α(Aφ + φA)φY .

From these, together with (5.5) and (5.6), we have

φ1φAY − Aφ1φY + Aφφ1Y + hY − hφ1φY − αh(Aφ + φA)φY + φAφY + α(Aφ + φA)AφY
+{φ1AφY + η2(AφY )φξ2 + η3(AφY )φξ3 + η2(φAφY )ξ2 + η3(φAφY )ξ3}
= 6η2(AY )ξ2 + 6η3(AY )ξ3 − hφφ1Y + φAφ1Y − 3φφ1AY + hY + φAφY
− hαφ(Aφ + φA)Y + αφA(Aφ + φA)Y .

Then this can be rearranged as follows:

φ1φAY − Aφ1φY + Aφφ1Y − hφ1φY + αφ1φY
+{φ1AφY + η2(AφY )φξ2 + η3(AφY )φξ3 + η2(φAφY )ξ2 + η3(φAφY )ξ3}
= 6η2(AY )ξ2 + 6η3(AY )ξ3 − hφφ1Y + φAφ1Y − 3φφ1AY + αφφ1Y , (5.7)

where we have used the following formulas obtained from (5.4):

αAφAφY = −αY + αφ1φY + α2(Aφ + φA)φY

and

αφAφAY = −αY + αφφ1Y + α2φ(Aφ + φA)Y .

Now let us take the inner product (5.7) with ξ2. Then for any Y ∈ Dwe have

g(φ1φAY , ξ2)− g(φ1φY , Aξ2)+ g(φφ1Y , Aξ2)− (h− α)g(φ1φY , ξ2)− g(AφX, φ1ξ2)+ η3(AφX)+ η2(φAφY )
= 6η2(AY )+ g(φAφ1Y , ξ2)− 3g(φφ1AY , ξ2)− (h− α)g(φφ1Y , ξ2). (5.8)

Then by a direct calculation in (5.8) for any Y ∈ D, we have

η3(AφY ) = 2η2(AY )+ η3(Aφ1Y ). (5.9)

Similarly, if we take the inner product (5.7) with ξ3, then it follows that

− η2(AφY ) = 2η3(AY )− η2(Aφ1Y ) (5.10)

for any vector field Y ∈ D. Then in this section we know that the distributionD can be decomposed into two distributions
D1 andD2 defined in such a way that

D1 = {Y ∈ D|φY = φ1Y }

and

D2 = {Y ∈ D|φY = −φ1Y }.

So first let us consider the distribution D1. The formulas (5.9) and (5.10) imply that ην(AY ) = 0 for any Y ∈ D1 and
ν = 1, 2, 3. Then we get our assertions on the distributionD1.
Next we consider the distributionD2. Then by (5.9) and (5.10) on such a distributionD2 we have

η2(AφY ) = −η3(AY ) and η3(AφY ) = η2(AY ). (5.11)

Substituting these formulas into (5.7), we have for any Y ∈ D2,

φ1φAY + φ1AφY = 4η2(AY )ξ2 + 4η3(AY )ξ3 + φAφ1Y − 3φφ1AY . (5.12)

From (5.4) and using φY = −φ1Y , Y ∈ D2, we have

AφAY = 0 and AφAφY = 0.

So from this, together with (5.3) and (5.6), it follows that

4φ1φAY + hA2Y − A3Y = 6η2(AY )ξ2 + 6η3(AY )ξ3
= 4φ1φAY + AφA2φY
= 4φ1φAY + φAφX + φ1AφY + η2(AφY )φξ2
+ η3(AφY )φξ3 + η2(φAφY )ξ2 + η3(φAφY )ξ3 (5.13)

where in the first equality we have used AφAφY = 0 and the fact thatφ1φAY = φφ1AY+η(AY )ξ1 = φφ1AY for any Y ∈ D2.
Now let us consider eigenvectors Y , φY ∈ D2 such that φY = −φ1Y . Then we can put

AY = λY +
3∑
ν=1

ην(AY )ξν
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and

AφY = λ̄φY +
3∑
ν=1

ην(AφY )ξν .

Then this also implies that

φAY = λφY +
3∑
ν=1

ην(AY )φξν .

From these formulas and (5.13) it follows that

4

{
λY +

3∑
ν=1

ην(AY )φ1φξν

}
+ λ̄

{
Y +

3∑
ν=1

ην(AφY )φ1ξν

}

= 4η2(AY )ξ2 + 4η3(AY )ξ3 + λ̄

{
Y −

3∑
ν=1

ην(AφY )φξν

}
. (5.14)

Then we have λ = 0 and similarly, λ̄ = 0. So it follows that

AY =
3∑
ν=1

ην(AY )ξν = g(Aξ2, Y )ξ2 + g(Aξ3, Y )ξ3.

Then for φY ∈ D2 we know that

AφY = g(Aξ2, φY )ξ2 + g(Aξ3, φY )ξ3. (5.15)

From this, applying φ and φ1 respectively, we have

φAφY = −g(Aξ2, φY )ξ3 + g(Aξ2, φY )ξ2
and

φ1AφY = g(Aξ2, φY )ξ3 − g(Aξ3, φY )ξ2.

From these formulas, together with (5.13), we have

φ1φAY = η2(AY )ξ2 + η3(AY )ξ3.

Then by applying φ1 we have

φAY = η3(AY )ξ2 − η2(AY )ξ3. (5.16)

By comparing (5.15) and (5.16), and using (5.11), we know that

Aφ = −φA (5.17)

on the distributionD2. From this and (5.4) it follows that for any Y ∈ D2,

0 = φY + φ1Y = AφAY = −A2φY .

So φY ∈ D2 gives A2Y = 0. Then from this and (5.5), and using φY = −φ1Y we have

6η2(AY )ξ2 + 6η3(AY )ξ3 − 4φ1φAY = 0,

where we have used that φφ1AY = φ1φAY + η1(AY )ξ = φ1φAY . From this, taking an inner product with ξ2 and using the
formulas in Section 2, we have

η2(AY ) = 0.

Similarly, we can assert that η3(AY ) = 0 for any Y ∈ D2. So combining this with the fact that ην(AY ) = 0 for any ν = 1, 2, 3,
and any Y ∈ D1, we have proved that ην(AY ) = 0 for any Y ∈ D, ν = 1, 2, 3. Accordingly, we have g(AD,D⊥) = 0 for
Hopf hypersurfacesM in G2(Cm+2)with commuting Ricci tensor and its Reeb vector ξ ∈ D⊥. Then, by virtue of Theorem A
we know that M is locally congruent to real hypersurfaces of type (A), that is, a tube over a totally geodesic G2(Cm+1) in
G2(Cm+2). �
We introduce in Theorem A, relating to this kind of hypersurface, another proposition due to Berndt and the present

author [6] as follows:

Proposition C. Let M be a connected real hypersurface of G2(Cm+2). Suppose that AD ⊂ D, Aξ = αξ , and ξ is tangent toD⊥.
Let J1 ∈ J be the almost Hermitian structure such that JN = J1N. Then M has three (if r = π/2) or four (otherwise) distinct
constant principal curvatures

α = αi =
√
8 cot

(√
8r
)
, αj = αk =

√
2 cot

(√
2r
)
, λ = −

√
2 tan

(√
2r
)
, µ = 0
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with some r ∈ (0, π/
√
8). The corresponding multiplicities are

m(αi) = 1, m(αj) = 2, m(λ) = 2m− 2 = m(µ),

and for the corresponding eigenspaces we have

Tα = Rξ = RJN,
Tβ = C⊥ξ = C⊥N,
Tλ = {X |X⊥Hξ, JX = J1X},
Tµ = {X |X⊥Hξ, JX = −J1X}.

In the paper [7] due to Berndt and the present author we have given a characterization of real hypersurfaces of type (A)
in TheoremAwhen the shape operator A ofM in G2(Cm+2) commutes with the structure tensor φ, which is equivalent to the
condition that the Reeb flow onM is isometric, that isLξg = 0, whereL (resp. g) denotes the Lie derivative (resp. the induced
Riemannian metric) of M in the direction of the Reeb vector field ξ . Namely, Berndt and the present author [7] proved the
following:

Theorem D. Let M be a connected orientable real hypersurface in G2(Cm+2),m ≥ 3. Then the Reeb flow on M is isometric if and
only if M is an open part of a tube around some totally geodesic G2(Cm+1) in G2(Cm+2).

Now let us check for the real hypersurfaces of type (A) mentioned in Proposition C and Theorem D whether they satisfy
a commuting Ricci tensor, that is, Sφ = φS. Then by Theorem D for the commuting shape operator, that is, Aφ = φA, the
commuting Ricci tensor Sφ = φS implies

− 3η2(φY )ξ2 − 3η3(φY )ξ3 + φ1φ2Y − η(φ2φY )φ2ξ − η(φ3φY )φ3ξ

= −3
3∑
ν=1

ην(Y )φξν + φφ1φY − η(φ2Y )φ2ξ − η(φ3Y )φ3ξ . (5.18)

Now let us check case by case whether the two sides in (5.18) are equal to each other as follows:
Case 1. Y = ξ = ξ1.
In this case it can be easily checked that the two sides are equal to each other.
Case 2. Y = ξ2, ξ3.
Then by putting X = ξ2 in (5.18) we have

−3η2(φξ2)ξ3 − φ1ξ2 + η2(ξ2)φ2ξ + η3(ξ2)φ3ξ = −3φξ2 + φφ1φξ2 − η(φ3ξ2)φ3ξ,

which implies that both sides are equal to ξ3.
Case 3. Y ∈ Tλ ⊕ Tµ.
In such a case we have immediately SφY = φSY .

Remark 5.1. In the paper due to Pérez and the author [13] we have proved that there do not exist any real hypersurfaces
M in G2(Cm+2)with parallel and commuting Ricci tensor. Such a geometric condition is stronger than our commuting Ricci
tensor in this paper. In the paper [12] we also have proved the non-existence property for real hypersurfaces in G2(Cm+2)
with commuting shape operator, that is, Aφi = φiA, i = 1, 2, 3.

References

[1] M. Kimura, Some real hypersurfaces of a complex projective space, Saitama Math. J. 5 (1987) 1–5.
[2] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986) 137–149.
[3] J.D. Pérez, Y.J. Suh, Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective space, ActaMath. Hungar. 91 (2001) 343–356.
[4] T.E. Cecil, P.J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982) 481–499.
[5] J.D. Pérez, Y.J. Suh, Real hypersurfaces of quaternionic projective space satisfying ∇ξiR = 0, Differential Geom. Appl. 7 (1997) 211–217.
[6] J. Berndt, Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians, Monatsh. Math. 127 (1999) 1–14.
[7] J. Berndt, Y.J. Suh, Isometric flows on real hypersurfaces in complex two-plane Grassmannians, Monatsh. Math. 137 (2002) 87–98.
[8] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with vanishing Lie derivatives, Canad. Math. Bull. 49 (2006) 134–143.
[9] Y.J. Suh, Pseudo-Einstein real hypersurfaces in complex two-plane Grassmannians, Bull. Aust. Math. Soc. 73 (2006) 183–200.
[10] D.V. Alekseevskii, Compact quaternion spaces, Funct. Anal. Appl. 2 (1966) 106–114.
[11] Y.J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians, Monatsh. Math. 147 (2006) 337–355.
[12] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting shape operator, Bull. Aust. Math. Soc. 68 (2003) 379–393.
[13] J.D. Pérez, Y.J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, J. Korean Math. Soc. 44 (2007) 211–235.


