Canad. Math. Bull. Vol. 49 (1), 2006 pp. 134-143

Real Hypersurfaces in Complex Two-Plane Grassmannians with Vanishing Lie Derivative

Young Jin Suh

Abstract. In this paper we give a characterization of real hypersurfaces of type A in a complex twoplane Grassmannian $G_2(\mathbb{C}^{m+2})$ which are tubes over totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$ in terms of the vanishing Lie derivative of the shape operator A along the direction of the Reeb vector field ξ .

0 Introduction

In the geometry of real hypersurfaces there were some characterizations of homogeneous real hypersurfaces of type A_1 , A_2 in complex projective space $\mathbb{C}P^m$ and of type A_0 , A_1 , A_2 in complex hyperbolic space $\mathbb{C}H^m$. As an example, we say that the shape operator A and the structure tensor ϕ commuting with each other, that is $A\phi = \phi A$, is a model characterization of this type hypersurface, which is a tube over a totally geodesic $\mathbb{C}P^k$ in $\mathbb{C}P^m$ (See Okumura [8]), a tube over a totally geodesic $\mathbb{C}H^k$ in $\mathbb{C}H^m$, or a horosphere in $\mathbb{C}H^m$ (See Montiel and Romero [7]).

Now let us denote by $G_2(\mathbb{C}^{m+2})$ the set of all complex two-dimensional linear subspaces in \mathbb{C}^{m+2} , which is said to be a *complex two-plane Grassmannian*. This Riemannian symmetric space $G_2(\mathbb{C}^{m+2})$ is equipped with both a Kähler structure J and a quaternionic Kähler structure \mathfrak{J} not containing J. Then for real hypersurfaces M in $G_2(\mathbb{C}^{m+2})$ we have considered the two natural geometric conditions that $[\xi] = \text{Span}\{\xi\}$ or $\mathfrak{D}^{\perp} = \text{Span}\{\xi_1, \xi_2, \xi_3\}$ be invariant under the shape operator Aof M, where $\xi = -JN$ and $J_{\nu} = -J_{\nu}N$, $\nu = 1, 2, 3$ for a unit normal vector field Nof M in $G_2(\mathbb{C}^{m+2})$. (See the details in [2, 3].)

The first result in this direction is the classification of real hypersurfaces in

 $G_2(\mathbb{C}^{m+2})$

satisfying both conditions mentioned above. Namely, Berndt and the present author [2] have proved the following:

Theorem A Let M be a connected real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \ge 3$. Then both $[\xi]$ and \mathfrak{D}^{\perp} are invariant under the shape operator of M if and only if

- (A) *M* is an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$, or
- (B) *m* is even, say m = 2n, and M is an open part of a tube around a totally geodesic $\mathbb{Q}P^n$ in $G_2(\mathbb{C}^{m+2})$.

Received by the editors February 1, 2004; revised July 5, 2004.

This work was supported by grant Proj. No. R14-2002-003-01001-0 from the Korea Science & Engineering Foundation.

AMS subject classification: Primary: 53C40; secondary: 53C15. ©Canadian Mathematical Society 2006.

Vanishing Lie Derivative

In [3], Berndt and the present author have given a characterization of real hypersurfaces of type *A* in Theorem A when the shape operator *A* of *M* in $G_2(\mathbb{C}^{m+2})$ commutes with the structure tensor ϕ , which is equivalent to the condition that *the Reeb flow on M is isometric*, that is $\mathcal{L}_{\xi}g = 0$, where $\mathcal{L}(\text{resp. }g)$ denotes the Lie derivative(resp. the induced Riemannian metric) of *M* in the direction of the Reeb vector field ξ . Namely, we proved the following:

Theorem B Let M be a connected orientable real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \ge 3$. Then the Reeb flow on M is isometric if and only if M is an open part of a tube around some totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

When the Reeb flow on M in $G_2(\mathbb{C}^{m+2})$ is *isometric* in Theorem B, we say that the Reeb vector field ξ on M is Killing. This means that the metric tensor g is invariant under the Reeb flow of ξ on M. In this paper, specifically we assert a characterization of real hypersurfaces of type A in Theorem A by another geometric Lie invariant, that is, the shape operator A of M in $G_2(\mathbb{C}^{m+2})$ is invariant under the Reeb flow on M as follows:

Main Theorem Let M be a connected orientable real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \ge 3$. Then the Reeb flow on M satisfies $\mathcal{L}_{\xi}A = 0$ if and only if M is an open part of a tube around some totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

1 Riemannian Geometry of $G_2(\mathbb{C}^{m+2})$

In this section we give basic material about complex two-plane Grassmannians

$$G_2(\mathbb{C}^{m+2}),$$

for details see [2, 3]. The special unitary group G = SU(m + 2) acts transitively on $G_2(\mathbb{C}^{m+2})$ with stabilizer isomorphic to $K = S(U(2) \times U(m)) \subset G$. Then $G_2(\mathbb{C}^{m+2})$ can be identified with the homogeneous space G/K, which we equip with the unique analytic structure for which the natural action of G on $G_2(\mathbb{C}^{m+2})$ becomes analytic.

Now let us denote by g and t the Lie algebra of G and K, respectively, and by m the orthogonal complement of t in g with respect to the Cartan–Killing form B of g. Then $g = t \oplus m$ is an Ad(K)-invariant reductive decomposition of g. We put o = eK and identify $T_oG_2(\mathbb{C}^{m+2})$ with m in the usual manner. Since B is negative definite on g, its negative restricted to $m \times m$ yields a positive definite inner product on m. By Ad(K)-invariance of B this inner product can be extended to a G-invariant Riemannian metric g on $G_2(\mathbb{C}^{m+2})$.

The Lie algebra \mathfrak{k} has the direct sum decomposition $\mathfrak{k} = \mathfrak{su}(m) \oplus \mathfrak{su}(2) \oplus \mathfrak{R}$, where \mathfrak{R} is the center of \mathfrak{k} . Viewing \mathfrak{k} as the holonomy algebra of $G_2(\mathbb{C}^{m+2})$, the center \mathfrak{R} induces a Kähler structure J and the $\mathfrak{su}(2)$ -part a quaternionic Kähler structure \mathfrak{J} on $G_2(\mathbb{C}^{m+2})$. If J_1 is any almost Hermitian structure in \mathfrak{J} , then $JJ_1 = J_1J$, and JJ_1 is a symmetric endomorphism with $(JJ_1)^2 = I$ and $\operatorname{tr}(JJ_1) = 0$.

A canonical local basis J_1 , J_2 , J_3 of \mathfrak{J} consists of three local almost Hermitian structures J_{ν} in \mathfrak{J} such that $J_{\nu}J_{\nu+1} = J_{\nu+2} = -J_{\nu+1}J_{\nu}$, where the index is taken modulo three. Since \mathfrak{J} is parallel with respect to the Riemannian connection $\overline{\nabla}$ of

 $(G_2(\mathbb{C}^{m+2}), g)$, there exist for any canonical local basis J_1 , J_2 , J_3 of \mathfrak{J} three local one-forms q_1, q_2, q_3 such that

(1.1)
$$\overline{\nabla}_X J_{\nu} = q_{\nu+2}(X) J_{\nu+1} - q_{\nu+1}(X) J_{\nu+2}$$

for all vector fields *X* on $G_2(\mathbb{C}^{m+2})$.

2 Some Fundamental Formulas for Real Hypersurfaces in $G_2(\mathbb{C}^{m+2})$

In this section we derive some basic formulae from the Codazzi equation for a real hypersurface *M* in $G_2(\mathbb{C}^{m+2})$.

The induced Riemannian metric on M will also be denoted by g, and ∇ denotes the Riemannian connection of (M, g). The Kähler structure J of $G_2(\mathbb{C}^{m+2})$ induces an almost contact metric structure (ϕ, ξ, η, g) on M. Furthermore, let J_1, J_2, J_3 be a canonical local basis of \mathfrak{J} . Then each J_{ν} induces an almost contact metric 3-structure $(\phi_{\nu}, \xi_{\nu}, \eta_{\nu}, g)$ on M. Using the expression for the curvature tensor \overline{R} of $G_2(\mathbb{C}^{m+2})$ given in [2] and [3], the Codazzi equation becomes

$$\begin{split} (\nabla_X A)Y - (\nabla_Y A)X &= \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi \\ &+ \sum_{\nu=1}^3 \{\eta_\nu(X)\phi_\nu Y - \eta_\nu(Y)\phi_\nu X - 2g(\phi_\nu X, Y)\xi_\nu\} \\ &+ \sum_{\nu=1}^3 \{\eta_\nu(\phi X)\phi_\nu\phi Y - \eta_\nu(\phi Y)\phi_\nu\phi X\} \\ &+ \sum_{\nu=1}^3 \{\eta(X)\eta_\nu(\phi Y) - \eta(Y)\eta_\nu(\phi X)\}\xi_\nu. \end{split}$$

The following identities can be proved in a straightforward method and will be used frequently in subsequent calculations, (see [10, 11]):

(2.1)

$$\begin{aligned}
\phi_{\nu+1}\xi_{\nu} &= -\xi_{\nu+2}, \quad \phi_{\nu}\xi_{\nu+1} &= \xi_{\nu+2}, \\
\phi_{\xi_{\nu}} &= \phi_{\nu}\xi, \quad \eta_{\nu}(\phi X) &= \eta(\phi_{\nu}X), \\
\phi_{\nu}\phi_{\nu+1}X &= \phi_{\nu+2}X + \eta_{\nu+1}(X)\xi_{\nu}, \\
\phi_{\nu+1}\phi_{\nu}X &= -\phi_{\nu+2}X + \eta_{\nu}(X)\xi_{\nu+1},
\end{aligned}$$

where the index ν denotes $\nu = 1, 2, 3$.

Now let us put

$$JX = \phi X + \eta(X)N, \quad J_{\nu}X = \phi_{\nu}X + \eta_{\nu}(X)N$$

for any tangent vector X of a real hypersurface M in $G_2(\mathbb{C}^{m+2})$, where N denotes a unit normal vector field of M in $G_2(\mathbb{C}^{m+2})$. Then from this and the formulas (1.1)

and (2.1) we have that

(2.2)
$$(\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi, \quad \nabla_X \xi = \phi AX,$$

(2.3) $\nabla_X \xi_{\nu} = q_{\nu+2}(X)\xi_{\nu+1} - q_{\nu+1}(X)\xi_{\nu+2} + \phi_{\nu}AX,$

(2.4)
$$(\nabla_X \phi_\nu) Y = -q_{\nu+1}(X) \phi_{\nu+2} Y + q_{\nu+2}(X) \phi_{\nu+1} Y + \eta_\nu(Y) A X - g(A X, Y) \xi_\nu.$$

Moreover, from $JJ_{\nu} = J_{\nu}J$, $\nu = 1, 2, 3$, it follows that

(2.5)
$$\phi\phi_{\nu}X = \phi_{\nu}\phi X + \eta_{\nu}(X)\xi - \eta(X)\xi_{\nu}.$$

3 Proof of the Main Theorem

Before giving the proof of our theorem, let us determine which of the model hypersurfaces given in Theorem A satisfy the formula $\mathcal{L}_{\xi}A = 0$. First note that

$$\begin{aligned} (\mathcal{L}_{\xi}A)X &= \mathcal{L}_{\xi}(AX) - A\mathcal{L}_{\xi}X \\ &= \nabla_{\xi}(AX) - \nabla_{AX}\xi - A(\nabla_{\xi}X - \nabla_{X}\xi) \\ &= (\nabla_{\xi}A)X - \nabla_{AX}\xi + A\nabla_{X}\xi \\ &= (\nabla_{\xi}A)X - \phi A^{2}X + A\phi AX \\ &= 0 \end{aligned}$$

for any vector field X on M. Then the assumption $\mathcal{L}_{\xi}A = 0$ holds if and only if $(\nabla_{\xi}A)X = \phi A^2 X - A\phi A X$. In this section we will show that only a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$ satisfies the formula $\mathcal{L}_{\xi}A = 0$.

Now let us consider a real hypersurfaces of type A, that is, a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$. By Proposition A of [11] we know that $\xi \in \mathfrak{D}^{\perp}$ and that the shape operator A and the structure tensor ϕ commute with each other. Then this implies that ξ is principal, that is, $A\xi = \alpha\xi$, where $\alpha = \sqrt{8} \cot(\sqrt{8}r)$. Differentiating this one, by (2.2) we have

$$(\nabla_X A)\xi = \nabla_X (A\xi) - A\nabla_X \xi$$
$$= \alpha \nabla_X \xi - A\nabla_X \xi$$
$$= \alpha \phi A X - A \phi A X.$$

On the other hand, by the equation of Codazzi and the assumption of $\mathcal{L}_{\xi}A = 0$ we have

(3.1)
$$(\nabla_X A)\xi = -\phi X - \sum_{\nu} \{\eta_{\nu}(\xi)\phi_{\nu}X - \eta_{\nu}(X)\phi_{\nu}\xi\} - 3\sum_{\nu} \eta_{\nu}(\phi X)\xi_{\nu} + \phi A^2 X - A\phi AX,$$

where \sum_{ν} denotes the summation from $\nu = 1$ to 3. Then from these two formulas we have

(3.2)
$$\alpha \phi AX - A\phi AX = -\phi X - \phi_1 X + \sum_{\nu} \eta_{\nu}(X) \phi_{\nu} \xi$$
$$-3 \sum_{\nu} \eta_{\nu}(\phi X) \xi_{\nu} + \phi A^2 X - A\phi AX$$

Now let us check case by case whether two sides in (3.2) are equal to each other as follows:

Case 1. $X = \xi = \xi_1$

In this case it can be easily checked that two sides are equal to each other.

Case 2. $X = \xi_2, \xi_3$

Then we may put $A\xi_2 = \beta \xi_2$, $A\xi_3 = \beta \xi_3$, where $\beta = \sqrt{2} \cot(\sqrt{2}r)$. Then by putting $X = \xi_2$ in (3.2) we have

$$\alpha\beta\phi\xi_2 = -3\xi_3 - 3\sum_{\nu}\eta_{\nu}(\phi\xi_2)\xi_{\nu} + \beta^2\phi\xi_2.$$

From this we know $\beta(\alpha - \beta)\phi\xi_2 = 2\xi_3$, which implies that both sides are equal to $2\xi_3$.

Case 3. $X \in T_{\lambda} = \{X | X \perp \mathbb{H}\xi, \phi X = \phi_1 X\}$

Then by putting $X \in T_{\lambda}$, $\lambda = -\sqrt{2} \tan(\sqrt{2}r)$ in (3.2) we have

$$\alpha\lambda\phi X = -\phi X - \phi_1 X + \sum_{\nu} \eta_{\nu}(X)\phi_{\nu}\xi - 3\sum_{\nu} \eta_{\nu}(\phi X)\xi_{\nu} + \lambda^2\phi X,$$

from this it implies that $\lambda(\alpha - \lambda)\phi X = -2\phi X$. This gives our assertion.

Case 4. $X \in T_{\mu} = \{X | X \perp \mathbb{H}\xi, \phi X = -\phi_1 X\}$

By putting $X \in T_{\mu}$, $\mu = 0$, in (3.2) we know that both sides are all vanishing.

Accordingly we conclude that real hypersurfaces of type A in Theorem A satisfy $\mathcal{L}_{\xi}A = 0$. In this section we are going to give the complete classification of real hypersurfaces M in $G_2(\mathbb{C}^{m+2})$ satisfying $\mathcal{L}_{\xi}A = 0$.

Now let us take an orthonormal basis $\{e_1, \ldots, e_{4m-1}\}$ for the tangent space T_xM , $x \in M$, of a real hypersurface M in $G_2(\mathbb{C}^{m+2})$. Then by the equation of Codazzi we may put

Vanishing Lie Derivative

$$(3.3) \quad (\nabla_{e_i} A) X - (\nabla_X A) e_i = \eta(e_i) \phi X - \eta(X) \phi e_i - 2g(\phi e_i, X) \xi + \sum_{\nu=1}^3 \{ \eta_\nu(e_i) \phi_\nu X - \eta_\nu(X) \phi_\nu e_i - 2g(\phi_\nu e_i, X) \xi_\nu \} + \sum_{\nu=1}^3 \{ \eta_\nu(\phi e_i) \phi_\nu \phi X - \eta_\nu(\phi X) \phi_\nu \phi e_i \} + \sum_{\nu=1}^3 \{ \eta(e_i) \eta_\nu(\phi X) - \eta(X) \eta_\nu(\phi e_i) \} \xi_\nu,$$

from which, together with the formulas (2.1) and (2.5) it follows that

$$(3.4) \sum_{i=1}^{4m-1} g((\nabla_{e_i} A)X, \phi e_i) = -(4m-2)\eta(X) + \sum_{\nu} \{g(\phi_{\nu} X, \phi \xi_{\nu}) + \eta_{\nu}(X) \operatorname{Tr} \phi \phi_{\nu} + 2g(\phi_{\nu}^2 \xi, X)\} - \sum_{\nu} g(\phi_{\nu} \phi X, \phi \phi_{\nu} \xi) - \sum_{\nu} \eta(X)g(\phi \xi_{\nu}, \phi \xi_{\nu}) = -(4m-2)\eta(X) - 3\eta(X) + \sum_{\nu} \eta_{\nu}(\xi)\eta_{\nu}(X) + \sum_{\nu} \eta_{\nu}(X) \operatorname{Tr} \phi \phi_{\nu} - \sum_{\nu} \eta_{\nu}(\xi)g(\phi_{\nu} \phi X, \xi) - 3\eta(X) + \sum_{\nu} \eta^2(\xi_{\nu})\eta(X) = -4(m+1)\eta(X) + 2\sum_{\nu} \eta_{\nu}(\xi)\eta_{\nu}(X) + \sum_{\nu} \eta_{\nu}(X) \operatorname{Tr} \phi \phi_{\nu},$$

where in the second equality we have used the formulas

$$\sum_{\nu} g(\phi_{\nu}\phi X, \phi\phi_{\nu}\xi) = \sum_{\nu} \eta_{\nu}(\xi)g(\phi_{\nu}\phi X, \xi),$$
$$\sum_{\nu} g(\phi\xi_{\nu}, \phi\xi_{\nu}) = 3\eta(X) - \sum_{\nu} \eta^{2}(\xi_{\nu})\eta(X),$$
$$\sum_{\nu} g(\phi_{\nu}^{2}\xi, X) = -3\eta(X) + \sum_{\nu} \eta_{\nu}(\xi)\eta_{\nu}(X),$$

and respectively in the third equality,

$$-\sum_{\nu} \eta_{\nu}(\xi) g(\phi_{\nu} \phi X, \xi) = \sum_{\nu} \eta_{\nu}(\xi) \eta_{\nu}(X) - \sum_{\nu} \eta(X) \eta_{\nu}^{2}(\xi).$$

Now let us denote by U the vector $\nabla_\xi\xi=\phi A\xi.$ Then by (2.2) its derivative can be given by

$$\nabla_{e_i} U = \eta(A\xi)Ae_i - g(Ae_i, A\xi)\xi + \phi(\nabla_{e_i}A)\xi + \phi A\nabla_{e_i}\xi$$

139

Then its divergence is given by

(3.5)
$$\operatorname{div} U = \sum_{i} g(\nabla_{e_{i}}U, e_{i})$$
$$= h\eta(A\xi) - \eta(A^{2}\xi) - g((\nabla_{e_{i}}A)\xi, \phi e_{i}) - g(\phi A e_{i}, A \phi e_{i}),$$

where *h* denotes the trace of the shape operator of *M* in $G_2(\mathbb{C}^{m+2})$.

Now we calculate the squared norm of the following:

$$(3.6) \|\phi A - A\phi\|^2 = \sum_i g((\phi A - A\phi)e_i, (\phi A - A\phi)e_i) \\ = \sum_{i,j} g((\phi A - A\phi)e_i, e_j)g((\phi A - A\phi)e_i, e_j) \\ = \sum_{i,j} \{g(\phi A e_j, e_i) + g(\phi A e_i, e_j)\}\{g(\phi A e_j, e_i) + g(\phi A e_i, e_j)\} \\ = 2\sum_{i,j} g(\phi A e_j, e_i)g(\phi A e_j, e_i) + 2\sum_{i,j} g(\phi A e_j, e_i)g(\phi A e_i, e_j) \\ = -2\sum_j g(\phi A e_j, A\phi e_j) + 2\sum_j g(\phi A e_j, \phi A e_j) \\ = 2\operatorname{Tr} A^2 - 2h\eta(A\xi) + 2\sum_i g((\nabla_{e_i}A)\xi, \phi e_i) + 2\operatorname{div} U, \end{aligned}$$

where $\sum_{i}(\text{resp. }\sum_{i,j})$ denotes the summation from i = 1 to i = 4m - 1 (resp. from i, j = 1 to 4m - 1) and in the final equality we have used (3.5). From this together with the formula (3.4) it follows that

(3.7)
$$\operatorname{div} U = \frac{1}{2} \|\phi A - A\phi\|^2 - \operatorname{Tr} A^2 + \alpha h + 4(m+1) - 2\sum_{\nu} \eta_{\nu}^2(\xi) - \sum_{\nu} \eta_{\nu}(\xi) \operatorname{Tr} \phi \phi_{\nu}$$

From this formula, together with the assumption $\mathcal{L}_{\xi}A = 0$ we want to show that the structure tensor ϕ and the shape operator A commute with each other, that is, $\phi A - A\phi = 0$. Then by Theorem B we are able to assert that M is a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

Now let us take an inner product (3.1) with the Reeb vector field ξ . Then we have

(3.8)
$$g((\nabla_X A)\xi,\xi) = -\sum_{\nu} \eta_{\nu}(\xi)\eta_{\nu}(\phi X) - 3\sum_{\nu} \eta_{\nu}(\phi X)\eta_{\nu}(\xi) - g(A\phi AX,\xi)$$

 $= -4\sum_{\nu} \eta_{\nu}(\xi)\eta_{\nu}(\phi X) + g(AX,U).$

140

On the other hand, by the almost contact structure ϕ we have

$$\phi U = \phi^2 A \xi = -A\xi + \eta (A\xi)\xi = -A\xi + \alpha\xi,$$

where the function α denotes $\eta(A\xi)$. From this, differentiating and using (2.2) gives

(3.9)
$$(\nabla_X \phi)U + \phi \nabla_X U = -(\nabla_X A)\xi - A \nabla_X \xi + (X\alpha)\xi + \alpha \nabla_X \xi - g(AX, U)\xi + \phi \nabla_X U.$$

Then by taking an inner product (3.9) with ξ and using $U = \phi A \xi$ we have

$$g((\nabla_X A)\xi,\xi) = g(AX,U) + X\alpha - g(\nabla_X \xi,A\xi)$$
$$= 2g(AX,U) + X\alpha.$$

From this, together with (3.8), we have

(3.10)
$$g(AX, U) + 4 \sum_{\nu} \eta_{\nu}(\xi) \eta_{\nu}(\phi X) + X\alpha = 0.$$

Now substituting (3.1) and (3.10) into (3.9) and using (2.2), we have

(3.11)
$$4\sum_{\nu} \eta_{\nu}(\xi)\eta_{\nu}(\phi X) + \phi \nabla_{X}U = \phi X + \sum_{\nu} \{\eta_{\nu}(\xi)\phi_{\nu}X - \eta_{\nu}(X)\phi_{\nu}\xi\} + 3\sum_{\nu} \eta_{\nu}(\phi X)\xi_{\nu} - \phi A^{2}X + \alpha\phi AX.$$

Then the above equation can be rewritten as follows:

$$\begin{split} \phi \nabla_X U &= \phi X - \phi A^2 X + \alpha \phi A X + \sum_{\nu} \{ \eta_{\nu}(\xi) \phi_{\nu} X - \eta_{\nu}(X) \phi_{\nu} \xi \} \\ &+ 3 \sum_{\nu} \eta_{\nu}(\phi X) \xi_{\nu} - 4 \sum_{\nu} \eta_{\nu}(\xi) \eta_{\nu}(\phi X) \xi. \end{split}$$

From this, summing up from 1 to 4m - 1 for an orthonormal basis of T_xM , $x \in M$, we have

(3.12)
$$\sum_{i} g(\phi \nabla_{e_{i}} U, \phi e_{i}) = \operatorname{div} U + ||U||^{2}$$
$$= (4m - 2) - \operatorname{Tr} A^{2} + \eta (A^{2}\xi) + \alpha \{\operatorname{Tr} A - \alpha\}$$
$$- \sum_{\nu} \eta_{\nu}(\xi) \operatorname{Tr} \phi \phi_{\nu}$$
$$- \sum_{\nu} g(\phi_{\nu}\xi, \phi_{\nu}\xi) + 3 \sum_{\nu} g(\xi_{\nu}, \xi_{\nu}) - 3 \sum_{\nu} \eta^{2}(\xi_{\nu}),$$

where in the first equality we have used the notion of $\operatorname{div} U$. Then it follows that

(3.13)
$$\operatorname{div} U = (4m - 2) - \operatorname{Tr} A^{2} + \alpha \operatorname{Tr} A - \sum_{\nu} \eta_{\nu}(\xi) \operatorname{Tr} \phi \phi_{\nu} - \left\{ 3 - \sum_{\nu} \eta(\xi_{\nu}) \eta(\xi_{\nu}) \right\} + 9 - 3 \sum_{\nu} \eta^{2}(\xi_{\nu}) = 4(m+1) + \alpha h - \operatorname{Tr} A^{2} - \sum_{\nu} \eta_{\nu}(\xi) \operatorname{Tr} \phi \phi_{\nu} - 2 \sum_{\nu} \eta^{2}(\xi_{\nu}),$$

where we have used $||U||^2 = ||A\xi||^2 - \alpha^2$ in (3.12).

Now if we compare (3.7) with the formula (3.13), we finally assert that the squared norm $||A\phi - \phi A||^2$ vanishes, that is, the structure tensor ϕ and the shape operator A commute with each other. Then by Theorem B in the introduction we are able to assert that M is a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$. This completes the proof of our Main Theorem.

Remark 3.1 Let M be a real hypersurface in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ satisfying $\mathcal{L}_{\xi}\phi = 0$. Then it is not difficult to show that the conditions $\mathcal{L}_{\xi}\phi = 0$ and $\mathcal{L}_{\xi}A = 0$ are equivalent. So we remark here that a real hypersurface M in $G_2(\mathbb{C}^{m+2})$ satisfying $\mathcal{L}_{\xi}\phi = 0$ is also congruent to a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

Remark 3.2 In paper [10] due to the present author we have proved some nonexistence properties for real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with parallel shape operator $\nabla A = 0$. Also in [11] we have investigated some real hpersurfaces M in $G_2(\mathbb{C}^{m+2})$ when the structure tensors ϕ_{ν} , $\nu = 1, 2, 3$, commute with the shape operator A of M in $G_2(\mathbb{C}^{m+2})$.

Acknowledgement The author would like to express his sincere gratitude to the referee for careful reading of the manuscript and valuable comments.

References

- [1] J. Berndt, Real hypersurfaces in quaternionic space forms. J. Reine Angew. Math. 419(1991), 9–26.
- J. Berndt and Y. J. Suh, *Real hypersurfaces in complex two-plane Grassmannians*. Monat. Math. 127(1999), 1–14.
- [3] _____, Isometric flows on real hypersurfaces in complex two-plane Grassmannians. Monat. Math. 137(2002), 87–98.
- [4] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space. Trans. Amer. Math. Soc. 269(1982), 481–499.
- [5] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space. Trans. Amer. Math. Soc. 296(1986), 137–149.
- [6] A. Martinez and J. D. Pérez, *Real hypersurfaces in quaternionic projective space*. Ann. Mat. Pura Appl. **145**(1986), 355–384.
- [7] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space. Geom. Dedicata 20(1986), 245–261.
- [8] M. Okumura, On some real hypersurfaces of a complex projective space. Trans. Amer. Math. Soc. 212(1975), 355–364.

Vanishing Lie Derivative

- [9] J. D. Pérez and Y. J. Suh, *Real hypersurfaces of quaternionic projective space satisfying* ∇_{Ui}R = 0. Differential Geom. and Appl. 7(1997), 211–217.
 [10] Y. J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator*. Bull. Austral. Math. Soc. 67(2003), 493–502.
 [11] _____, *Real hypersurfaces in complex two-plane Grassmannians with commuting shape operator*. Bull. Austral. Math. Soc. 68(2003), 379–393.
- [12] K. Yano and M. Kon, CR-submanifolds of Kaehlerian and Sasakian manifolds. Birkhäuser, Boston, Basel, Strutgart, 1983.

Kyungpook National University Department of Mathematics Taegu 702-701 Korea e-mail: yjsuh@mail.knu.ac.kr