Conformally symmetric semi-Riemannian manifolds ${ }^{\text {Wh}}$

Young Jin Suh ${ }^{\text {a,* }}$, Jung-Hwan Kwon ${ }^{\text {b }}$, Hae Young Yang ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Kyungpook University, Taegu 702-701, Korea
${ }^{\text {b }}$ Department of Mathematics Education, Taegu University, Taegu 705-714, Korea

Received 14 March 2005; received in revised form 25 April 2005; accepted 11 May 2005
Available online 1 July 2005

Abstract

In this paper we introduce the concept of conformal curvature-like tensor on a semi-Riemannian manifold, which is weaker than the notion of conformal curvature tensor defined on a Riemannian manifold. By such kind of conformal curvature-like tensor we give a complete classification of conformally symmetric semi-Riemannian manifolds with generalized non-null stress energy tensor. © 2005 Elsevier B.V. All rights reserved.

MSC: Primary 53C40; Secondary 53C15

Keywords: Weyl curvature tensor; Conformally symmetric; Conformal-like curvature tensor; Semi-Riemannian manifold

1. Introduction

Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold with a metric tensor g and a Riemannian connection ∇ and let R (resp. S or r) be the Riemannian curvature tensor (resp. the Ricci tensor or the scalar curvature) on M. Any two self-adjoint $(1,1)$ tensor fields A, B

[^0]on a semi-Riemannian manifold (M, g) we define Kulkrani-Nomizu tensor product $A \otimes B$ of End $\Lambda^{2} T M$ in such a way that
$$
(A \otimes B)(X, Y)=\frac{1}{2}(A X \wedge B Y+B Y \wedge A Y)
$$

Then the conformal curvature tensor C of a semi-Riemannian manifold (M, g) acting on two-forms is given by

$$
C=R-2(n-1)^{-1} \mathrm{id} \otimes S+(n-1)^{-1}(n-2)^{-1} r \mathrm{id} \otimes \mathrm{id}
$$

where id denotes the identity tensor of type $(1,1)$ on (M, g). The conformal curvature tensor C should be the trace free part of the Riemannian curvature tensor R in above orthogonal decomposition, that is, $\operatorname{Ric}(C)=0$, and is conformally invariant. Moreover, the conformal curvature tensor C, if n is at least 4 , vanishes if and only if the metric is conformally flat.

Such a conformal flatness is equivalent to the vanishing of the Weyl conformal curvature tensor in dimension not less than 4 . This should be an interesting subject, because there are many other examples of conformally flat manifolds which are not spaces of constant curvature, and because of its important applications to physics (see $[6,8,9]$).

Now the components $C_{i j k l}$ of the conformal curvature tensor C can be written by

$$
\begin{align*}
C_{i j k l}= & R_{i j k l}-\frac{1}{n-2}\left(S_{i l} g_{j k}-S_{i k} g_{j l}+S_{j k} g_{i l}-S_{j l} g_{i k}\right) \\
& +\frac{r}{(n-1)(n-2)}\left(g_{i l} g_{j k}-g_{i k} g_{j l}\right) \tag{1.1}
\end{align*}
$$

where $R_{i j k l}$ (resp. $S_{i j}$) denotes the components of the curvature tensor R (resp. the Ricci tensor S) on M.

We say that M is conformally symmetric if the conformal curvature tensor C is parallel, that is $\nabla C=0$. Such kind of conformally flat or conformally symmetric semi-Riemannian manifolds have been studied by Besse [1], Bourguignon [2], Derdziński and Shen [4], Ryan [10], Simon [15], Weyl [17,18], Yano [19], Yano and Bochner [20]. More generally, conformally symmetric semi-Riemannian manifolds with indices 0 and 1 are investigated by Derdziński and Roter [3]. In particular, in semi-Riemannian manifolds with index 0 , which are also said to be Riemannian manifolds, Derdziński and Roter [3] and Miyazawa [7] proved the following

Theorem A. An $n(\geq 4)$-dimensional conformally symmetric manifold is conformally flat or locally symmetric.

In particular, Derdziński and Roter [3] investigated the structure of analytic conformally symmetric indefinite Riemannian manifold of index 1 which is neither conformally flat nor locally symmetric.

The symmetric tensor K of type $(0,2)$ with components $K_{i j}$ is called the Weyl tensor, if it satisfies

$$
\begin{equation*}
K_{i j l}-K_{i l j}=\frac{1}{2(n-1)}\left(k_{l} g_{i j}-k_{j} g_{i l}\right) \tag{1.2}
\end{equation*}
$$

where $k=\operatorname{Tr} K$ and $K_{i j l}$ (resp. k_{j}) are components of the covariant derivative ∇K (resp. ∇k).

On the other hand, in Weyl $[17,18]$ it can be easily seen that the Ricci tensor is equal to the Weyl tensor when we only consider an $n(\geq 4)$-dimensional conformally flat Riemannian manifold.

Now as a generalization of conformal curvature tensor we introduce a new notion of conformal curvature-like tensor $B(T, U)$, which is defined in [12-14] due to the present authors. It was given as follows:

Let T be any curvature-like tensor (see its define in Section 2, in detail) and let U be any symmetric tensor of type $(0,2)$ satisfying $2 C_{12}(\nabla U)=C_{23}(\nabla U)$, where C_{12} and C_{23} denote the metric contraction defined by $2 \sum_{i} \epsilon_{i} \nabla U\left(E_{i}, E_{i}, X\right)=\sum_{i} \epsilon_{i} \nabla U\left(X, E_{i}, E_{i}\right)$ for any vector X at x and for any orthonormal basis $\left\{E_{j}\right\}$ for the tangent space $T_{x} M$ to M at x. Then let us define the tensor $B=B(T, U)$ with components $B_{i j k l}$ such that

$$
\begin{align*}
B_{i j k l}= & T_{i j k l}-\frac{1}{n-2}\left(U_{i l} g_{j k}-U_{i k} g_{j l}+U_{j k} g_{i l}-U_{j l} g_{i k}\right) \\
& +\frac{u}{(n-1)(n-2)}\left(g_{i l} g_{j k}-g_{i k} g_{j l}\right) \tag{1.3}
\end{align*}
$$

where $u=\operatorname{Tr} U$. Then such a tensor $B=B(T, U)$ is said to be the conformal curvature-like tensor, which is a general extension of the usual conformal curvature tensor C in (1.1). For this kind of conformal curvature-like tensor $B(T, U)$ we also define the notion of conformally flat or conformally symmetric according as $B=0$ or $\nabla B=0$ respectively.

The Ricci-like tensor $\operatorname{Ric}(B)$ of B is defined by $\operatorname{tr}\{Z \rightarrow B(Z, X) Y\}$. Then the components $B_{i j}$ of $\operatorname{Ric}(B)$ is defined by $B_{i j}=\sum_{k} \epsilon_{k} B_{k i j k}$. Thus by (1.3), its components can be written as $B_{i j}=T_{i j}-U_{i j}$, where $T_{i j}=\sum_{k} \epsilon_{k} T_{k i j k}$.

Now the tensor $\operatorname{Ric}(B)-\frac{b}{n} g$ defined on a semi-Riemannian manifold is said to be the generalized stress energy tensor for the conformal curvature-like tensor $B=B(R, U)$, where $b=\operatorname{Tr}(\operatorname{Ric}(B))=C_{12}(\operatorname{Ric}(B))$. The physical meaning of such kind of stress energy tensor can be explained in more detail as follows:

In general relativity there can be no universal a priori geometry, since for any spacetime the Einstein equation already determines the stress energy tensor T, which is given by

$$
T=\frac{1}{8 \pi}\left(\operatorname{Ric}-\frac{1}{2} S g\right)
$$

where $S=C_{12}$ (Ric) denotes the scalar curvature. This is an Einstein equation between the stress energy tensor in physics and the Ricci curvature in differential geometry of spacetime. Thus a given spacetime can be used to model matter only in the unlikely case that T happens to be a physically realistic stress energy tensor (See $[6,8,9]$).

When the curvature-like tensor T (resp. the symmetric tensor U) mentioned above is equal to the curvature tensor R (resp. the Ricci tensor S), then $B(R, S)$ can be identified with the conformal curvature tensor C. Moreover, a semi-Riemannian manifold M is said to be locally symmetric if its derivative of the curvature tensor R vanishes, that is, $\nabla R=0$.

Now in this paper we want to make a generalization of Theorem A in the direction of semi-Riemannian manifolds with symmetric conformal curvature-like tensor. In order to do this we need a geometric physical condition, that is, the generalized non-null stress energy tensor which is weaker than the notion of stress energy tensor given in B.O'Neill [8,9]. That is, we show the following

Theorem. Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold with generalized non-null stress energy tensor. Let U be the symmetric tensor in $D^{2} M$ and its trace ∇u is non-null and let $B=B(R, U)$ be the conformal curvature-like tensor. If it is conformally symmetric for the conformal curvature-like tensor $B(R, U)$, then it is locally symmetric, conformally flat or $\langle\nabla U, \nabla U\rangle=0$.

In the proof of our Theorem, we have used a useful Corollary 5.1 given in Section 5 and Lemma 6.3 and Theorem 6.1 given in Section 6. Now we will give its brief outline of the proof as follows:

In Corollary 5.1, under the assumption that ∇u is non-null we have proved the scalarlike curvature u is constant. Moreover, in Lemma 6.3, if the conformal curvature-like tensor $B=B(R, U)$ is symmetric on a semi-Riemannian manifold M, that is $\nabla B=0$, we have proved that the generalized non-null stress energy tensor vanishes when M is not locally symmetric. By using such results, in Theorem 6.4 we are able to show that M is conformally flat when M is not locally symmetric.

If M is a Riemannian manifold, the result $\langle\nabla U, \nabla U\rangle=0$ in our Theorem implies that the symmetric tensor U is parallel on M. From this together with the assumption of conformal symmetry $\nabla B=0$ we can assert that $\nabla R=0$, that is M is locally symmetric.

2. Preliminaries

Let M be an $n(\geq 2)$-dimensional semi-Riemannian manifold of index $s(0 \leq s \leq n)$ equipped with semi-Riemannian metric tensor ∇ and let R (resp. S or r) be the Riemannian curvature tensor (resp. the Ricci tensor or the scalar curvature) on M.

Now we can choose a local field $\left\{E_{j}\right\}=\left\{E_{1}, \ldots, E_{n}\right\}$ of orthonormal frames on a neighborhood of M. Here and in the sequel, the Latin small indices i, j, k, \ldots, run from 1 to n. With respect to the semi-Riemannian metric we have $g\left(E_{j}, E_{k}\right)=\epsilon_{j} \delta_{j k}$, where

$$
\epsilon_{j}=-1 \text { or } 1 \text { according as } 0 \leq j \leq s \text { or } s+1 \leq j \leq n
$$

Let $\left\{\theta_{j}\right\},\left\{\theta_{i j}\right\}$ and $\left\{\Theta_{i j}\right\}$ be the canonical form, the connection form and the curvature form on M, respectively, with respect to the field $\left\{E_{j}\right\}$ of orthonormal frames. Then we have
the structure equations

$$
\begin{aligned}
& \mathrm{d} \theta_{i}+\sum_{j} \epsilon_{j} \theta_{i j} \wedge \theta_{j}=0, \quad \theta_{i j}+\theta_{j i}=0, \quad \mathrm{~d} \theta_{i j}+\sum_{k} \epsilon_{k} \theta_{i k} \wedge \theta_{k j}=\Theta_{i j} \\
& \Theta_{i j}=-\frac{1}{2} \sum_{k, l} \epsilon_{k l} R_{i j k l} \theta_{k} \wedge \theta_{l}
\end{aligned}
$$

where $\epsilon_{i j \ldots k}=\epsilon_{i} \epsilon_{j \ldots} \ldots \epsilon_{k}$ and $R_{i j k l}$ denotes the components of the Riemannian curvature tensor R of M (See $[9,11,12,14])$.

Now, let C be the conformal curvature tensor with components $C_{i j k l}$ on M, which is given by

$$
\begin{align*}
C_{i j k l}= & R_{i j k l}-\frac{1}{n-2}\left(\epsilon_{j} S_{i l} \delta_{j k}-\epsilon_{j} S_{i k} \delta_{j l}+\epsilon_{i} S_{j k} \delta_{i l}-\epsilon_{i} S_{j l} \delta_{i k}\right) \\
& +\frac{r}{(n-1)(n-2)} \epsilon_{i j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right) \tag{2.1}
\end{align*}
$$

where $S_{i j}$ denotes the components of the Ricci tensor S with respect to the orthonormal frame field $\left\{E_{j}\right\}$.

Remark 2.1. If M is Einstein, the conformal curvature tensor C satisfies

$$
C_{i j k l}=R_{i j k l}-\frac{r}{n(n-1)} \epsilon_{i j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right)
$$

This yields that the conformal curvature tensor of an Einstein Riemannian manifold is the concircular curvature one [20]. In particular, if M is a space of constant curvature, the conformal curvature tensor vanishes identically.

Let $D^{r} M$ be the vector bundle consisting of differentiable r-forms and $D M=$ $\sum_{r=0}^{n} D^{r} M$, where $D^{0} M$ is the algebra of differentiable functions on M. For any tensor field K in $D^{r} M$ the components $K_{i j k l h}$ of the covariant derivative ∇K of K are defined by (for simplicity, we consider the case $r=4$)

$$
\sum_{h} \epsilon_{h} K_{i j k l h} \theta_{h}=\mathrm{d} K_{i j k l}-\sum_{h} \epsilon_{h}\left(K_{h j k l} \theta_{h i}+K_{i h k l} \theta_{h j}+K_{i j h l} \theta_{h k}+K_{i j k h} \theta_{h l}\right)
$$

Now we denote by $T M$ the tangent bundle of M. Let T be a quadrilinear mapping of $T M \times T M \times T M \times T M$ into \mathbb{R} satisfying the curvature-like properties:
(a) $T(X, Y, Z, U)=-T(Y, X, Z, U)=-T(X, Y, U, Z)$,
(b) $T(X, Y, Z, U)=T(Z, U, X, Y)$,
(c) $T(X, Y, Z, U)+T(Y, Z, X, U)+T(Z, X, Y, U)=0$.

Then T is called the curvature-like tensor on M (see B.O. N'eill [8], for example). For an orthonormal frame $\left\{E_{j}\right\}$, let $T_{i j k l}$ be the components of T associated with the orthonor-
mal frame. Accordingly, the components $T_{i j k l}$ are given by $T_{i j k l}=T\left(E_{i}, E_{j}, E_{k}, E_{l}\right)$. The components of T corresponding to the conditions (a), (b) and (c) are given by respectively

$$
\begin{align*}
& T_{i j k l}=-T_{j i k l}=-T_{i j l k}, \tag{2.2}\\
& T_{i j k l}=T_{k l i j}=T_{l k j i}, \tag{2.3}\\
& T_{i j k l}+T_{j k i l}+T_{k i j l}=0 . \tag{2.4}
\end{align*}
$$

If the components $T_{i j k l}$ of a tensor T in $D^{4} M=\otimes^{4} T^{*} M$ satisfy (2.2), (2.3) and (2.4), then it becomes a curvature-like tensor. Let $F M$ be the ring consisting of all smooth functions on M and let $T_{r}^{s} M$ be the module over $F M$ consisting of all tensor fields of type (r, s) defined on M. Let $H=H(M, g)$ be the vector subbundle in $D^{3} M$ which, at any point x in M, consists of all trilinear mapping ξ of $T_{x} M$ into \mathbb{R} such that $\xi(X, Y, Z)=\xi(X, Z, Y)$ for any vectors at x and

$$
2 \sum_{r} \epsilon_{r} \xi\left(E_{r}, E_{r}, X\right)=\sum_{r} \epsilon_{r} \xi\left(X, E_{r}, E_{r}\right)
$$

for any vector X at x and for any orthonormal basis $\left\{E_{j}\right\}$ for the tangent space $T_{x} M$ to M at x.

For any integers a and b such that $1 \leq a<b \leq s$ the metric contraction reduced by a and b is denoted by $\mathcal{C}_{a b}: T_{s}^{r} M \rightarrow T_{s-2}^{r} M$ with respect to the orthonormal frame $\left\{E_{j}\right\}$. In terms of the metric contraction, the section ξ in $C^{\infty}(H)$ satisfies that $\xi(X, Y, Z)$ is symmetric with respect to Y and Z and $2 \mathcal{C}_{12}(\xi)=\mathcal{C}_{23}(\xi)$.

Let U be a symmetric tensor of type $(0,2)$ in $D^{2} M$ with components $U_{i j}\left(=U_{j i}\right)=$ $U\left(E_{i}, E_{j}\right)$. The symmetric tensor U in $D^{2} M$ is called the Weyl tensor if its components of the covariant derivative ∇U of U satisfy

$$
\begin{equation*}
U_{i j k}-\frac{1}{2(n-1)} u_{k} \epsilon_{i} \delta_{i j}=U_{i k j}-\frac{1}{2(n-1)} u_{j} \epsilon_{i} \delta_{i k} \tag{2.5}
\end{equation*}
$$

where $u=\mathcal{C}_{12} U$. In particular, if u is constant, then U is called the Codazzi tensor. Now we define the covariant derivative ∇U of the symmetric tensor U in such a way that $\nabla U(X, Y, Z)=\nabla_{X} U(Y, Z)$. Since U is symmetric, so is ∇U with respect to Y and Z. Moreover, we know that

$$
\nabla_{E_{k}} U\left(E_{i}, E_{j}\right)=\nabla U\left(E_{k}, E_{i}, E_{j}\right)=U_{i j k}\left(=U_{j i k}\right)
$$

Then by (2.5) and the expression of ∇U it can be easily seen that

$$
\sum_{k} \epsilon_{k} U_{k j k}=\frac{1}{2} u_{j},
$$

where $u_{j}=\sum_{l} \epsilon_{l} U_{l l j}=\sum_{l} \epsilon_{l} \nabla U\left(E_{j}, E_{l}, E_{l}\right)$. This means $C_{12}(\nabla U)=C_{23}(\nabla U) / 2$. Accordingly, we know that ∇U is the section of the bundle H. For such a pair (T, U), we define the tensor $B=B(T, U)$ with components $B_{i j k l}$ by

$$
\begin{align*}
B_{i j k l}= & T_{i j k l}-\frac{1}{n-2}\left(\epsilon_{i} U_{j k} \delta_{i l}-\epsilon_{i} U_{j l} \delta_{i k}+\epsilon_{j} U_{i l} \delta_{j k}-\epsilon_{j} U_{i k} \delta_{j l}\right) \\
& +\frac{u}{(n-1)(n-2)} \epsilon_{i j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right) \tag{2.6}
\end{align*}
$$

which is said to be the conformal curvature-like tensor for T and U. The Ricci-like tensor $\operatorname{Ric}(B)$ of B is defined by $\operatorname{tr}\{Z \rightarrow B(Z, X) Y\}$. Then the components $B_{i j}$ of $\operatorname{Ric}(B)$ is given by $B_{i j}=\sum_{k} \epsilon_{k} B_{k i j k}$. By (2.6), we get

$$
\begin{equation*}
B_{i j}=T_{i j}-U_{i j} \tag{2.7}
\end{equation*}
$$

Remark 2.2. For a given semi-Riemannian manifold M with Riemannian connection ∇, there exist so many kind of pairs (T, U) for the curvature-like tensor T and the symmetric tensor of $D^{2} M$ such that ∇U is contained in $C^{\infty}(H)$. Among them the most popular pair is (R, S). In particular, let U be the Weyl tensor and let K be the parallel symmetric tensor in $D^{2} M$. Then $U+K$ is also the Weyl tensor.

For an orthonormal frame $\left\{E_{j}\right\}$, let $\theta_{0}=\left\{\theta_{j}\right\}, \theta=\left\{\theta_{i j}\right\}$ and $\Theta=\left\{\Theta_{i j}\right\}$ be the canonical form, the connection form and the curvature form on M. In the same way as we associate a curvature form Θ to the Riemannian curvature tensor R, we associate a two-form $\Phi_{T}=\left\{\Phi_{i j}\right\}$ to the curvature-like tensor T in the following

$$
\begin{equation*}
\Phi_{i j}=\sum_{k, l} \epsilon_{k l} T_{i j k l} \theta_{k} \wedge \theta_{l}, \tag{2.8}
\end{equation*}
$$

which is the analogue to the curvature form Θ except for the coefficient. So it is called the curvature-like form for the curvature-like tensor T. The canonical form $\theta_{0}=\left\{\theta_{j}\right\}$ can be regarded as a vector in \mathbb{R}^{n} and the connection form $\theta=\left\{\theta_{i j}\right\}$ and the curvature-like form $\Phi_{T}=\left\{\Phi_{i j}\right\}$ can be regarded as $n \times n$ skew-symmetric matrices. We call the equation

$$
\begin{equation*}
\mathrm{d} \Phi_{T}=\Phi_{T} \wedge \theta-\theta \wedge \Phi_{T} \tag{2.9}
\end{equation*}
$$

the second Bianchi equation for the curvature-like form Φ_{T}. Then it is not difficult to assert the following proposition:

Proposition 2.1. On the semi-Riemannian manifold M, let T be the curvature-like tensor in $D^{4} M$ on M. Then the following assertions are equivalent:
(a) The curvature-like form Φ_{T} satisfies the second Bianchi Eq. (2.9).
(b) Its components satisfy

$$
\begin{equation*}
T_{i j k l h}+T_{i j l h k}+T_{i j h k l}=0 \tag{2.10}
\end{equation*}
$$

Now let T be the curvature-like tensor in $D^{4} M$ and let Ψ_{T} be the associated curvaturelike form with T. The mapping $\delta: \wedge^{4} T_{*} M \rightarrow \wedge^{3} T_{*} M$ defined by the divergence: $\delta\left(\Psi_{T}\right)=$ $-\left(\mathcal{C}_{15} \nabla T\right)$, where $\mathcal{C}_{a b}$ is the metric contraction defined by $C_{a b}: T_{s}^{r} M \rightarrow T_{s-2}^{r} M$. This is a
generalization of the well-known differential operators on \mathbb{R}^{3}. For the orthonormal frame $\left\{E_{j}\right\}$, in terms of coordinates, the components of $\delta\left(\Psi_{T}\right)$ is given by

$$
\delta\left(\Psi_{T}\right)_{i j k}=-\sum_{l} \epsilon_{l} T_{l i j k l}
$$

If $\delta\left(\Psi_{T}\right)=0$, then the form Ψ_{T} is said to be coclosed.
Remark 2.3. On the Riemannian manifold (M, g) with Riemannian connection ∇, it has a formal adjoint $\nabla^{*}: T^{*} M \times T_{s}^{r} M \rightarrow T_{s}^{r} M$ defined as follows: for any vector fields X_{1}, \ldots, X_{r} and any α in $T^{*} M \times T_{s}^{r} M, \nabla^{*} \alpha$ is given by

$$
\nabla^{*} \alpha\left(X_{1}, \ldots, X_{r}\right)=-\sum_{k} \epsilon_{k} \nabla_{E_{k}} \alpha\left(E_{k}, X_{1}, \ldots, X_{r}\right)
$$

where $\left\{E_{j}\right\}$ is the orthonormal frame. Namely, $\nabla^{*} \alpha\left(X_{1}, \ldots, X_{r}\right)$ is the opposite of the trace with respect to g of the $D^{s} M$ valued two-form

$$
(X, Y) \longrightarrow \nabla_{X} \alpha\left(Y, X_{1}, \ldots, X_{r}\right)
$$

For the exterior differential $d: D^{r} M \rightarrow D^{r+1} M$ let us denote by $\delta: D^{r} M \rightarrow D^{r-1} M$ its formal adjoint. For the orthonormal base $\left\{E_{j}\right\}$ of $T_{x} M$ at any point x, the components of $\delta\left(\Psi_{T}\right)$ are given by

$$
\delta\left(\Psi_{T}(T)\right)(X, Y, Z)=-\sum_{k} \epsilon_{k} \nabla_{E_{k}} \Psi_{T}(T)\left(E_{k}, X, Y, Z\right)
$$

Accordingly, the above operator δ on semi-Riemannian manifolds is a formal analogue of the adjoint operator to the exterior differential d on a Riemannian manifold. See Besse [1], for example.

The semi-Riemannian manifold (M, g) is said to have harmonic-like curvature for T if $\delta\left(\Psi_{T}\right)=0$. In particular, if $T=R$, then we say that (M, g) has harmonic curvature (See Besse [1]).

Now, the concept of Ricci-like tensors for the curvature-like tensor on the semiRiemannian manifold is introduced. Let M be an n-dimensional semi-Riemannian manifold with semi-Riemannian metric g and curvature like tensor T with components $T_{i j k l}$. The tensor $\operatorname{Ric}(T)$ associated with the curvature-like tensor T is defined by

$$
\operatorname{Ric}(T)(X, Y)=\operatorname{trace}\{Z \rightarrow T(Z, X) Y\}
$$

where $T(Z, X) Y$ is a vector field defined by $T(X, Y, Z, W)=g(T(X, Y) Z, W)$ for any vector fields X, Y, Z and W. Then $\operatorname{Ric}(T)$ is called the Ricci-like tensor for T. By the definition, the Ricci-like tensor $\operatorname{Ric}(T)$ of T is a symmetric tensor of type $(0,2)$ and its components $T_{i j}$ are given by $T_{i j}=\sum_{k} \epsilon_{k} T_{k i j k}$. Moreover, by (2.3) we know that $T_{i j}=T_{j i}$. The scalar-like
curvature t associated with T is defined by $t=\mathcal{C}_{12}(\operatorname{Ric}(T))=\sum_{j, k} \epsilon_{j k} T_{k j j k}$. If we follow new extended formulas in a semi-Riemannian manifold, we are able to show the following theorem in [12], which gives an extension of the paper [14] discussed in its Riemannian version,

Theorem 2.1. Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold and let T be the curvature-like tensor and let U be the symmetric tensor in $D^{2} M$. If any two assertions in the following are satisfied, then another one holds true:
(a) T satisfies the second Bianchi identity,
(b) The conformal curvature-like tensor $B=B(T, U)$ satisfies the second Bianchi identity,
(c) U is the Weyl tensor.

3. Weyl tensors

Let M be an $n(\geq 2)$-dimensional semi-Riemannian manifold of index $2 s, 0 \leq s \leq n$, with Riemannian connection ∇ and let $R($ resp. S or r) be the Riemannian curvature tensor (resp. the Ricci tensor or the scalar curvature) on M.

Now let T be a curvature-like tensor and let U be a symmetric tensor of type $(0,2)$ such that $2 \mathcal{C}_{12}(\nabla U)=\mathcal{C}_{23}(\nabla U)$. In this section we are going to prove some lemmas concerned with such a symmetric tensor U. From the conformal curvature-like tensor $B=B(T, U)$ given in (2.6), we know that $B=B(T, U)$ is the curvature-like tensor for the pair (T, U). Moreover, we have

$$
\begin{equation*}
\operatorname{Ric}(B)=\operatorname{Ric}(T)-U \tag{3.1}
\end{equation*}
$$

In fact, putting $i=l$, multiplying ϵ_{i} and summing up with respect to the index l in (2.6) we get $B_{j k}=T_{j k}-U_{j k}$, where $T_{j k}$ and $B_{j k}$ are components of the Ricci-like tensors $\operatorname{Ric}(T)=\mathcal{C}_{14}(T)$ and $\operatorname{Ric}(B)=\mathcal{C}_{14}(B)$.

Now let us put $t=\mathcal{C}_{12}(\operatorname{Ric}(T)), b=\mathcal{C}_{12}(\operatorname{Ric}(B))$ and $u=\mathcal{C}_{12}(U)$. Then by (3.1) we have

$$
\begin{equation*}
b=t-u \tag{3.2}
\end{equation*}
$$

Remark 3.1. For the conformal curvature tensor C, the Ricci-like tensor $\operatorname{Ric}(C)$ satisfies $\operatorname{Ric}(C)=0$.

When the symmetric tensor U in $D^{2} M$ is the Weyl tensor, we are going to prove some lemmas, which will be used in Section 5, as follows:

Lemma 3.1. Let M be an $n(\geq 2)$-dimensional semi-Riemannian manifold. If U is the Weyl tensor, we obtain

$$
\begin{equation*}
\sum_{r} \epsilon_{r}\left(R_{r i k l} U_{r j}+R_{r i l j} U_{r k}+R_{r i j k} U_{r l}\right)=0 . \tag{3.3}
\end{equation*}
$$

Proof. By the definition (2.5) we have

$$
U_{i j k}-U_{i k j}=\frac{1}{2(n-1)}\left(u_{k} \epsilon_{i} \delta_{i j}-u_{j} \epsilon_{i} \delta_{i k}\right)
$$

Differentiating covariantly, we get

$$
\begin{equation*}
U_{i j k l}-U_{i k j l}=\frac{1}{2(n-1)}\left(u_{k l} \epsilon_{i} \delta_{i j}-u_{j l} \epsilon_{i} \delta_{i k}\right) . \tag{3.4}
\end{equation*}
$$

Interchanging the indices k and l and substituting the resulting equation from the above one, we obtain

$$
U_{i j k l}-U_{i j l k}+U_{i l j k}-U_{i k j l}=\frac{1}{2(n-1)}\left(u_{j k} \epsilon_{i} \delta_{i l}-u_{j l} \epsilon_{i} \delta_{i k}\right)
$$

where we have used the property $u_{i j}$ is symmetric with respect to i and j, because u is the function. So we have

The left hand side

$$
\begin{aligned}
&\left(U_{i j k l}-U_{i j l k}\right)+\left(U_{i l j k}-U_{i l k j}\right)+\left(U_{i l k j}-U_{i k j l}\right) \\
&=\left(U_{i j k l}-U_{i j l k}\right)+\left(U_{i l j k}-U_{i l k j}\right) \\
&+\left[\left\{U_{i k l j}+\frac{1}{2(n-1)}\left(u_{k j} \epsilon_{i} \delta_{i l}-u_{l j} \epsilon_{i} \delta_{i k}\right)\right\}-U_{i k j l}\right] \\
&=-\sum_{r} \epsilon_{r}\left(R_{l k i r} U_{r j}+R_{l k j r} U_{i r}\right)-\sum_{r} \epsilon_{r}\left(R_{k j i r} U_{r l}+R_{k j l r} U_{i r}\right) \\
&-\sum_{r} \epsilon_{r}\left(R_{j l i r} U_{r k}+R_{j l k r} U_{i r}\right)+\frac{1}{2(n-1)}\left(u_{k j} \epsilon_{i} \delta_{i l}-u_{l j} \epsilon_{i} \delta_{i k}\right) \\
&=-\sum_{r}\left(R_{l k i r} U_{r j}+R_{j l i r} U_{r k}+R_{k j i r} U_{r l}\right)+\frac{1}{2(n-1)}\left(u_{k j} \epsilon_{i} \delta_{i l}-u_{l j} \epsilon_{i} \delta_{i k}\right)
\end{aligned}
$$

where the second equality follows from (3.4) and the third equality can be derived from the Ricci identity for the tensor $U_{i j}$. Accordingly, we have (3.3), which completes the proof.

Lemma 3.2. Let M be an $n(\geq 2)$-dimensional semi-Riemannian manifold and let $B=$ $B(R, U)$ be the conformal curvature-like tensor for the Riemannian curvature tensor R and any symmetric tensor U in $D^{2} M$. If U is the Weyl tensor, then we obtain

$$
\begin{align*}
& \sum_{r} \epsilon_{r}\left(B_{r i k l} U_{r j}+B_{r i l j} U_{r k}+B_{r i j k} U_{r l}\right)=0, \tag{3.5}\\
& \sum_{r} \epsilon_{r} B_{k r} U_{r l}=\sum_{r} \epsilon_{r} B_{l r} U_{r k} . \tag{3.6}
\end{align*}
$$

Proof. By the assumption of this Lemma, the components of B are given by

$$
\begin{align*}
B_{i j k l}= & R_{i j k l}-\frac{1}{n-2}\left(\epsilon_{i} U_{j k} \delta_{i l}-\epsilon_{i} U_{j l} \delta_{i k}+\epsilon_{j} U_{i l} \delta_{j k}-\epsilon_{j} U_{i k} \delta_{j l}\right) \\
& +\frac{u}{(n-1)(n-2)} \epsilon_{i j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right) . \tag{3.7}
\end{align*}
$$

Substituting $B_{i j k l}$ into the left hand side of (3.5) and using (3.3), we get the equation (3.5). Since the tensor $U_{i j}$ is symmetric and the tensor $B_{i j k l}$ is skew-symmetric indices i and j, we have $\sum_{r, s} \epsilon_{r s} B_{r s k l} U_{r s}=0$. Putting $i=j$, multiplying ϵ_{i} and summing up with respect to i in (3.5), from the above property together with $B_{i j}=\sum_{r} \epsilon_{r} B_{r i j r}$, we get (3.6). This completes the proof.

4. Conformally symmetric

Let M be an $n(\geq 2)$-dimensional semi-Riemannian manifold of index $2 s, 0 \leq s \leq n$, with Riemannian connection ∇ and let $R($ resp. S or r) be the Riemannian curvature tensor (resp. the Ricci tensor or the scalar curvature) on M.

Now, let U be a symmetric tensor of type $(0,2)$ such that $2 \mathcal{C}_{12}(\nabla U)=\mathcal{C}_{23}(\nabla U)$. We put $u=\mathcal{C}_{12} U$. For such a pair (R, U) we define a tensor $B=B(R, U)$ with components $B_{i j k l}$ with respect to the field $\left\{E_{j}\right\}$ of orthonormal frames by

$$
\begin{align*}
B_{i j k l}= & R_{i j k l}-\frac{1}{n-2}\left(\epsilon_{i} U_{j k} \delta_{i l}-\epsilon_{i} U_{j l} \delta_{i k}+\epsilon_{j} U_{i l} \delta_{j k}-\epsilon_{j} U_{i k} \delta_{j l}\right) \\
& +\frac{u}{(n-1)(n-2)} \epsilon_{i j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right) . \tag{4.1}
\end{align*}
$$

We have then

$$
\begin{equation*}
\operatorname{Ric}(B)=S-U \tag{4.2}
\end{equation*}
$$

In fact, putting $i=l$, multiplying ϵ_{i} and summing up with respect to the index i in (4.1) we get $B_{j k}=S_{j k}-U_{j k}$, where $B_{j k}$ are components of the Ricci-like tensor $\operatorname{Ric}(B)=\mathcal{C}_{14}(B)$.

Now let us put $b=\mathcal{C}_{12}(\operatorname{Ric}(B))=\operatorname{Tr}(\operatorname{Ric}(B))$ and $u=\mathcal{C}_{12}(U)=\operatorname{Tr} U$. Then by (4.2) we have

$$
\begin{equation*}
b=r-u . \tag{4.3}
\end{equation*}
$$

By Theorem 2.1 if the curvature-like tensor $B=B(R, U)$ for the pair (R, U) satisfies the second Bianchi identity, then U is the Weyl tensor. Of course the Ricci tensor S is the Weyl tensor. We remark that the restriction $n \geq 4$ of the dimension is here necessary.

The semi-Riemannian manifold M is said to be conformally symmetric, if the conformal curvature-like tensor B is parallel, i.e., if $\nabla B=0$. Concerned with such a conformal symmetry of the conformal curvature-like tensor B we prove the following:

Lemma 4.1. Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold. If M is conformally symmetric for B, then

$$
\begin{equation*}
\sum_{r} \epsilon_{r}\left(B_{r i k l} U_{r j h}+B_{r i l j} U_{r k h}+B_{r i j k} U_{r l h}\right)=0 . \tag{4.4}
\end{equation*}
$$

Proof. The Riemannian curvature tensor R satisfies the second Bianchi identity. On the other hand, since the conformal curvature-like tensor $B(R, U)$ is parallel, it also satisfies the second Bianchi identity by Proposition 2.1. Accordingly, the symmetric tensor U is the Weyl tensor by Theorem 2.1, because of $n \geq 4$. By Lemma 3.2 we have

$$
\sum_{r} \epsilon_{r}\left(B_{r i k l} U_{r j}+B_{r i l j} U_{r k}+B_{r i j k} U_{r l}\right)=0
$$

from which together with the assumption that B is parallel we have the equation (4.4). This completes the proof.

Now we have $\sum_{r, s} \epsilon_{r s} B_{r s k l} U_{r s h}=0$, because $B_{i j k l}$ is skew-symmetric with respect to i and j and $U_{i j h}$ is symmetric with respect to i and j. Putting $i=j$, multiplying ϵ_{i}, summing up with respect to i in (4.4) and applying the above property to the obtained equation, we have

$$
\begin{equation*}
\sum_{r} \epsilon_{r} B_{k r} U_{r l h}=\sum_{r} \epsilon_{r} B_{l r} U_{r k h} \tag{4.5}
\end{equation*}
$$

Since U is the Weyl tensor, it satisfies $\sum_{r} \epsilon_{r} U_{k r r}=u_{k} / 2$. Putting $l=h$, multiplying ϵ_{l}, summing up with respect to l in (4.4) and applying the property $\sum_{r} \epsilon_{r} U_{k r r}=u_{k} / 2$, we have

$$
\begin{equation*}
\sum_{r, s} \epsilon_{r s}\left(B_{r i k s} U_{j r s}-B_{r i j s} U_{k r s}\right)=-\frac{1}{2} \sum_{r} \epsilon_{r} B_{r i j k} u_{r} . \tag{4.6}
\end{equation*}
$$

Putting $i=j$, multiplying ϵ_{i} and summing up with respect to i in (4.6), we have

$$
\begin{equation*}
2 \sum_{r, s} \epsilon_{r s} B_{r s} U_{k r s}=\sum_{r} \epsilon_{r} B_{k r} u_{r} \tag{4.7}
\end{equation*}
$$

because we see $\sum_{r s t} \epsilon_{r s t} B_{r t k s} U_{t r s}=0$.
Summing up the above formulas, we prove the following which will be useful in Section 5.

Lemma 4.2. Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold. If M is conformally symmetric for the conformal curvature-like tensor $B(R, U)$, then we obtain

$$
\begin{equation*}
2(n-1) \sum_{r} \epsilon_{r}\left(B_{i r} U_{j k r}-B_{k r} U_{j i r}\right)=\sum_{r} \epsilon_{r j}\left(B_{i r} u_{r} \delta_{j k}-B_{k r} u_{r} \delta_{i j}\right) . \tag{4.8}
\end{equation*}
$$

Proof. Since M is conformally symmetric for the conformal curvature-like tensor $B(R, U)$, we have $B_{i j k l h}=0$ and $B_{i j k l h p}=0$. Accordingly, we have by (4.1)

$$
\begin{align*}
R_{i j k l h}= & \frac{1}{n-2}\left(\epsilon_{j} U_{i l h} \delta_{j k}-\epsilon_{j} U_{i k h} \delta_{j l}+\epsilon_{i} U_{j k h} \delta_{i l}-\epsilon_{i} U_{j l h} \delta_{i k}\right) \\
& -\frac{1}{(n-1)(n-2)} u_{h} \epsilon_{i j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right) \tag{4.9}
\end{align*}
$$

On the other hand, by the Ricci identity, we get

$$
\sum_{r} \epsilon_{r}\left(R_{p h i r} B_{r j k l}+R_{p h j r} B_{i r k l}+R_{p h k r} B_{i j r l}+R_{p h l r} B_{i j k r}\right)=0 .
$$

Differentiating covariantly and taking account of $B_{i j k l h}=0$, we have

$$
\sum_{r} \epsilon_{r}\left(R_{p h i r q} B_{r j k l}+R_{p h j r q} B_{i r k l}+R_{p h k r q} B_{i j r l}+R_{p h l r q} B_{i j k r}\right)=0 .
$$

By (4.9) and the above equation we have

$$
\begin{align*}
& \sum_{r} \epsilon_{r}\left[\left\{\left(\epsilon_{h} U_{p r q} \delta_{h i}-\epsilon_{h} U_{p i q} \delta_{h r}+\epsilon_{p} U_{h i q} \delta_{p r}-\epsilon_{p} U_{h r q} \delta_{p i}\right)\right.\right. \\
& \left.\quad+u_{q} \epsilon_{h p}\left(\delta_{p r} \delta_{h i}-\delta_{p i} \delta_{h r}\right) /(n-1)\right\} B_{r j k l}+\left\{\left(\epsilon_{h} U_{p r q} \delta_{h j}\right.\right. \\
& \left.\left.\quad-\epsilon_{h} U_{p j q} \delta_{h r}+\epsilon_{p} U_{h j q} \delta_{p r}-\epsilon_{p} U_{h r q} \delta_{p j}\right)+u_{q} \epsilon_{h p}\left(\delta_{p r} \delta_{h j}-\delta_{p j} \delta_{h r}\right) /(n-1)\right\} B_{i r k l} \\
& \quad+\left\{\left(\epsilon_{h} U_{p r q} \delta_{h k}-\epsilon_{h} U_{p k q} \delta_{h r}+\epsilon_{p} U_{h k q} \delta_{p r}-\epsilon_{p} U_{h r q} \delta_{p k}\right)\right. \\
& \left.\quad+u_{q} \epsilon_{h p}\left(\delta_{p r} \delta_{h k}-\delta_{p k} \delta_{h r}\right) /(n-1)\right\} B_{i j r l}+\left\{\left(\epsilon_{h} U_{p r q} \delta_{h l}-\epsilon_{h} U_{p l q} \delta_{h r}\right.\right. \\
& \left.\left.\left.\quad+\epsilon_{p} U_{h l q} \delta_{p r}-\epsilon_{p} U_{h r q} \delta_{p l}\right)+u_{q} \epsilon_{h p}\left(\delta_{p r} \delta_{h l}-\delta_{p l} \delta_{h r}\right) /(n-1)\right\} B_{i j k r}\right]=0 . \tag{4.10}
\end{align*}
$$

Putting $h=i$, multiplying ϵ_{i} and summing up with respect to i and taking account of the first Bianchi identity, we have

$$
\begin{aligned}
& \sum_{r} \epsilon_{r}\left\{(n-2) B_{r j k l} U_{p r q}-\sum_{s} \epsilon_{s p}\left(B_{r j s l} \delta_{p k}+B_{s j k r} \delta_{p l}\right) U_{r s q}\right. \\
& \left.\quad+\left(B_{r p k l} U_{r j q}+B_{r j p l} U_{r k q}+B_{r j k p} U_{r l q}\right)\right\}+\left(B_{j l} U_{p k q}-B_{j k} U_{p l q}\right) \\
& \quad-\frac{1}{n-1} u_{q} \epsilon_{p}\left(B_{j l} \delta_{p k}-B_{j k} \delta_{p l}\right)=0 .
\end{aligned}
$$

Taking account of (4.4), the above equation is deformed as

$$
\begin{align*}
& \sum_{r} \epsilon_{r}\left\{(n-1) B_{r j k l} U_{p r q}-\sum_{s} \epsilon_{s p}\left(B_{r j s l} \delta_{p k}+B_{s j k r} \delta_{p l}\right) U_{r s q}+B_{r p k l} U_{r j q}\right\} \\
& \quad+\left(B_{j l} U_{p k q}-B_{j k} U_{p l q}\right)-\frac{1}{n-1} u_{q} \epsilon_{p}\left(B_{j l} \delta_{p k}-B_{j k} \delta_{p l}\right)=0 \tag{4.11}
\end{align*}
$$

Putting $l=q$ in the above equation, multiplying ϵ_{l} and summing up with respect to l, we get

$$
\begin{align*}
& \sum_{r, s} \epsilon_{r s}\left\{(n-2) B_{r j k s} U_{p r s}-\sum_{t} \epsilon_{t} U_{r s t} \epsilon_{p}\left(B_{r j s t} \delta_{p k}+B_{s j k r} \delta_{p t}\right)\right. \\
& \left.\quad+\left(B_{r p k s} U_{r j s}+B_{r j p s} U_{r k s}+B_{r j k p} U_{r s s}\right)\right\}+\sum_{r} \epsilon_{r}\left\{\left(B_{j r} U_{p k r}-B_{j k} U_{p r r}\right)\right. \\
& \left.\quad-\frac{1}{n-1} u_{r} \epsilon_{p}\left(B_{j r} \delta_{p k}-B_{j k} \delta_{p r}\right)\right\}=0 \tag{4.12}
\end{align*}
$$

Taking account of the fact that $B_{i j k l}$ is skew symmetric with respect to k and l and using (2.5), we get the following relation:

$$
\begin{equation*}
\sum_{r, s, t} \epsilon_{r s t} B_{j r s t} U_{r s t}=\frac{1}{2(n-1)} \sum_{r} \epsilon_{r} B_{j r} u_{r} \tag{4.13}
\end{equation*}
$$

In fact, we get

$$
\begin{aligned}
\text { The left hand side } & =\frac{1}{2} \sum_{r, s, t} \epsilon_{r s t} B_{j r s t}\left(U_{r s t}-U_{r t s}\right) \\
& =\frac{1}{4(n-1)} \sum_{s, t} \epsilon_{s t} B_{j r s t}\left(u_{T} \delta_{r s}-u_{s} \delta_{r t}\right) \\
& =\frac{1}{4(n-1)} \sum_{t} \epsilon_{t}\left(B_{j t} u_{t}+B_{j t} u_{t}\right)
\end{aligned}
$$

Making use of (4.13) and calculating straightforwardly, we can obtain

$$
\begin{align*}
& \sum_{r} \epsilon_{r s}\left\{(n-2) B_{r j k s} U_{p r s}-B_{r j k s} U_{r s p}+B_{r p k s} U_{j r s}+B_{r j p s} U_{k r s}\right\} \\
& \quad+\sum_{r} \epsilon_{r}\left(\frac{1}{2} B_{r j k p} u_{r}+B_{j r} U_{p k r}\right) \\
& \quad-\frac{1}{2(n-1)}\left\{(n-3) B_{j k} u_{p}+\sum_{r} \epsilon_{r p} B_{j r} u_{r} \delta_{p k}\right\}=0 . \tag{4.14}
\end{align*}
$$

Interchanging indices j and k in (4.14) and subtracting the resulting equation from the original one, using (2.5) and (4.6), we have

$$
\begin{aligned}
& (n-1) \sum_{r} \epsilon_{r}\left(B_{p j k r}+B_{j k p r}-B_{p k j r}\right) u_{r}+2(n-1) \sum_{r} \epsilon_{r}\left(B_{j r} U_{p k r}\right. \\
& \left.\quad-B_{k r} U_{p j r}\right)-\epsilon_{p} \sum_{r} \epsilon_{r} u_{r}\left(B_{j r} \delta_{p k}-B_{k r} \delta_{p j}\right)=0 .
\end{aligned}
$$

Making use of the first Bianchi identity for B, we have (4.8). This completes the proof.

5. Scalar-like curvatures

Let M be an $n(\geq 4)$-diemnsional semi-Riemannian manifold of index $s(0 \leq s \leq n)$ equipped with semi-Riemannian metric g and Riemannian connection ∇ and let R (resp. S or r) be the Riemannian curvature tensor (resp. the Ricci tensor or the scalar curvature) on M. Let U be the symmetric tensor in $D^{2} M$ and let $B=B(R, U)$ be the conformal curvature-like tensor. Then $u=\operatorname{Tr} U$ is called the scalar-like curvature for B.

Now let C be the conformal curvature tensor defined on M. Glodeck [5] and Tanno [16] proved that any non-conformally flat conformal symmetric Riemannian manifold has the constant scalar curvature. We put $b=\operatorname{Tr}(\operatorname{Ric}(B))$. If $\nabla B=0$, then the function b is constant on M. In this section we prove the following

Proposition 5.1. Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold and let U be the symmetric tensor in $D^{2} M$ and let $B=B(R, U)$ be the conformal curvature-like tensor. If $\nabla B=0$, then $b\langle\nabla u, \nabla u\rangle=0$.

In order to prove this proposition we verify some lemmas step by step as follows:
Lemma 5.1. Under the situation of Proposition 5.1, we have

$$
\begin{align*}
\sum_{r} \epsilon_{r} B_{i r} U_{r j} & =\sum_{r} \epsilon_{r} B_{j r} U_{r i}, \tag{5.1}\\
\sum_{r} \epsilon_{r} B_{i r} U_{r j k} & =\sum_{r} \epsilon_{r} B_{j r} U_{r i k} . \tag{5.2}
\end{align*}
$$

Proof. Since B is parallel, it satisfies the second Bianchi identity. Accordingly, by Theorem 2.1, U is the Weyl tensor and it satisfies (3.5). Putting $i=j$ in (3.5), multiplying ϵ_{i}, and summing up with respect to the index i, we get

$$
\sum_{r, s} \epsilon_{r s} B_{r s k l} U_{r s}-\sum_{r} \epsilon_{r} B_{l r} U_{r k}+\sum_{r} \epsilon_{r} B_{k r} U_{r l}=0,
$$

the first term of which vanishes identically on M. Thus we get

$$
\sum_{r} \epsilon_{r} B_{i r} U_{r j}=\sum_{r} \epsilon_{r} B_{j r} U_{r i}
$$

Accordingly, (5.1) is satisfied. Because of $\nabla B=0$, we have $\nabla \operatorname{Ric}(B)=0$, which means that $B_{i j k}=0$. So Lemma 5.1 is proved.

Lemma 5.2. Under the situation of Proposition 5.1, we have

$$
\begin{align*}
& \sum_{r} \epsilon_{r} B_{i r} u_{r}=b u_{i}, \tag{5.3}\\
& \langle\nabla u, \nabla u\rangle B_{i j}=b u_{i} u_{j} . \tag{5.4}
\end{align*}
$$

Proof. By (2.5) and (4.8), we have

$$
\begin{aligned}
\sum_{r} & \epsilon_{r}\left(B_{i r} U_{j k r}-B_{k r} U_{i j r}\right)-\frac{1}{2(n-1)}\left(\sum_{r} \epsilon_{r} B_{i r} u_{r} \epsilon_{j} \delta_{j k}-\sum_{r} \epsilon_{r} B_{k r} u_{r} \epsilon_{i} \delta_{i j}\right) \\
= & \sum_{r} \epsilon_{r} B_{i r}\left\{U_{j r k}+\frac{1}{2(n-1)}\left(u_{r} \epsilon_{j} \delta_{j k}-u_{k} \epsilon_{j} \delta_{j r}\right)\right\} \\
& -\sum_{r} \epsilon_{r} B_{k r}\left\{U_{j r i}+\frac{1}{2(n-1)}\left(u_{r} \epsilon_{j} \delta_{j i}-u_{i} \epsilon_{j} \delta_{j r}\right)\right\} \\
& -\frac{1}{2(n-1)}\left(\sum_{r} \epsilon_{r} B_{i r} u_{r} \epsilon_{j} \delta_{j k}-\sum_{r} \epsilon_{r} B_{k r} u_{r} \epsilon_{i} \delta_{i j}\right) \\
= & \frac{1}{2(n-1)}\left(-B_{i j} u_{k}+B_{k j} u_{i}\right)=0,
\end{aligned}
$$

where the second equality follows from (5.2). Accordingly, we can obtain

$$
\begin{equation*}
B_{i j} u_{k}=B_{k j} u_{i} \tag{5.5}
\end{equation*}
$$

from which we have (5.3) and

$$
\sum_{r} \epsilon_{r} u_{r} u_{r} B_{i j}=\sum_{r} \epsilon_{r} B_{j r} u_{r} u_{i}
$$

This implies (5.4), which proves our assertion.
Lemma 5.3. Under the situation of Proposition 5.1, we have

$$
\begin{equation*}
2 b\langle\nabla u, \nabla u\rangle \sum_{r} \epsilon_{r} U_{r i j} u_{r}=b\langle\nabla u, \nabla u\rangle u_{i} u_{j} . \tag{5.6}
\end{equation*}
$$

Proof. By (4.7), (5.3) and (5.4), we have

$$
2 b \sum_{r, s} \epsilon_{r s} U_{i r s} u_{r} u_{s}=b \sum_{r} \epsilon_{r} u_{r} u_{r} u_{i} .
$$

On the other hand, the left side of the above equation can be reformed as

$$
2 b \sum_{r, s} \epsilon_{r s}\left\{U_{r s i}+\frac{1}{2(n-1)}\left(u_{s} \epsilon_{r} \delta_{r i}-u_{i} \epsilon_{r} \delta_{r s}\right)\right\} u_{r} u_{s}=2 b \sum_{r, s} \epsilon_{r s} U_{r s i} u_{r} u_{s}
$$

by (2.5). From this together with the above equations, we get

$$
\begin{equation*}
2 b \sum_{r, s} \epsilon_{r s} U_{r s i} u_{r} u_{s}=b \sum_{r} \epsilon_{r} u_{r} u_{r} u_{i} . \tag{5.7}
\end{equation*}
$$

By (5.2) and (5.4), we have

$$
b \sum_{r} \epsilon_{r} u_{i} U_{r j k} u_{r}=b \sum_{r} \epsilon_{r} u_{j} U_{r i k} u_{r} .
$$

Thus we have

$$
2 b \sum_{s} \epsilon_{s} u_{s} u_{s} \sum_{r} \epsilon_{r} U_{r j k} u_{r}=2 b \sum_{r, s} \epsilon_{r s} u_{j} U_{r s k} u_{r} u_{s}=b\left(\sum_{s} \epsilon_{s} u_{s} u_{s}\right) u_{j} u_{k},
$$

where the last equality is derived from (5.7). This completes the proof.
Let M^{\prime} be the subset of M consisting of points x at which $b\langle\nabla u, \nabla u\rangle(x) \neq 0$. By (4.2) if $U=S$, then $\operatorname{Ric}(B)=0$ and hence $b=\operatorname{Tr}(\operatorname{Ric}(B))=0$. This means that $U \neq S$ on M^{\prime}. Now let us consider a function f on M^{\prime} defined by $b /\langle\nabla u, \nabla u\rangle$. We denote by $u_{i j}$ the components of the tensor $\nabla \nabla u$.

Lemma 5.4. Under the situation of Proposition 5.1, we have on M^{\prime}

$$
\begin{equation*}
u_{i j}=h u_{i} u_{j} \tag{5.8}
\end{equation*}
$$

where h is a differentiable function defined on M^{\prime}.
Proof. By Lemma 5.2, we have $B_{i j}=f u_{i} u_{j}$. Differentiating covariantly this equation, and taking account of $\nabla B=0$, we get

$$
f_{k} u_{i} u_{j}+f\left(u_{i k} u_{j}+u_{i} u_{j k}\right)=0
$$

Putting $j=k$, multiplying ϵ_{k} and summing up with respect to k, we get the fact that $\sum_{r} \epsilon_{r} u_{i r} u_{r}$ is proportional to u_{i}, since the function f has no zero points on M^{\prime}. Transvecting $u_{i} u_{j}$ to the above equation, we obtain the fact that f_{k} is proportional to u_{k}. It implies that $u_{j k}=h u_{j} u_{k}$ on M^{\prime}. This completes the proof.

Under such a situation, applying $B_{i j}$ to the Ricci identity and using $\nabla B=0$, we have

$$
\sum_{r} \epsilon_{r}\left(R_{l k i r} B_{r j}+R_{l k j r} B_{i r}\right)=0
$$

By Lemma 5.2 we have $B_{i j}=f u_{i} u_{j}$ and hence, from the above two equations we get

$$
\sum_{r} \epsilon_{r}\left(R_{l k i r} u_{r} u_{j}+R_{l k j r} u_{i} u_{r}\right)=0
$$

on M^{\prime}. Thus, we obtain $\sum_{r, s} \epsilon_{r s}\left(R_{l k i r} u_{r} u_{s} u_{s}+R_{l k s r} u_{i} u_{r} u_{s}\right)=0$. Since $R_{l k s r}$ is skewsymmetric with respect to indices r and s, the second term is zero and hence it turns out to
be $\sum_{r} \epsilon_{r} R_{l k i r} u_{r}\langle\nabla u, \nabla u\rangle=0$. So we get on M^{\prime}

$$
\begin{equation*}
\sum_{r} \epsilon_{r} R_{r j k l} u_{r}=0 \tag{5.9}
\end{equation*}
$$

Proof of Proposition 5.1. In order to prove Proposition 5.1, it suffices to show that the subset M^{\prime} is empty. Suppose that M^{\prime} is not empty. Differentiating (5.9) covariantly, we get on M^{\prime}

$$
\sum_{r} \epsilon_{r}\left(R_{r j k l} u_{r i}+R_{r j k l i} u_{r}\right)=0
$$

By (5.8) and (5.9) the first term vanishes identically and so it yields that

$$
\sum_{r} \epsilon_{r} R_{r j k l i} u_{r}=0
$$

By (4.9) we have

$$
\sum_{r} \epsilon_{r}\left(\epsilon_{j} U_{r l h} \delta_{j k}-\epsilon_{j} U_{r k h} \delta_{j l}\right) u_{r}+U_{j k h} u_{l}-U_{j l h} u_{k}-\frac{1}{n-1} u_{h} \epsilon_{j}\left(\delta_{j k} u_{l}-\delta_{j l} u_{k}\right)=0
$$

since B is parallel. By (5.6) the above equation is reformed as

$$
\epsilon_{j} u_{l} u_{h} \delta_{j k}-\epsilon_{j} u_{k} u_{h} \delta_{j l}+2 U_{j k h} u_{l}-2 U_{j l h} u_{k}-\frac{2}{n-1} u_{h} \epsilon_{j}\left(u_{l} \delta_{j k}-u_{k} \delta_{j l}\right)=0
$$

and hence we have

$$
(n-3) u_{h} \epsilon_{j}\left(u_{l} \delta_{j k}-u_{k} \delta_{j l}\right)+2(n-1)\left(U_{j k h} u_{l}-U_{j l h} u_{k}\right)=0
$$

Putting $j=k$, multiplying ϵ_{j} and summing up with respect to j in the above equation and by (5.6), we get

$$
(n-1)(n-2) u_{h} u_{l}=0,
$$

which means that $\langle\nabla u, \nabla u\rangle=0$ on M^{\prime}, a contradiction. Thus the subset M^{\prime} is empty.
By Proposition 5.1, we are able to generalize a theorem due to Glodeck [5] and Tanno [16] as follows:

Theorem 5.1. Let (M, g) be an $n(\geq 4)$-dimensional semi-Riemannian manifold. Let U be a symmetric tensor in $D^{2} M$ with $u=\operatorname{Tr} U$ and let $B=B(R, U)$ be the conformal curvaturelike tensor. If $\nabla B=0$, then the scalar product $\langle\nabla u, \nabla u\rangle$ vanishes identically.

Proof. Since B is parallel, $b=\operatorname{Tr}(\operatorname{Ric}(B))$ is constant. First we suppose $b \neq 0$. Then by Proposition 5.1 we get $\langle\nabla u, \nabla u\rangle=0$.

Next we suppose that $b=0$. We put $U(k)=U+k g$, where k is a positive constant. Then $U(k)$ is also symmetric tensor in $D^{2} M$. Now we put $B(k)=B(R, U(k))$. Then it can be another conformal curvature-like tensor on M defined in such a way that

$$
B(k)_{i j k l}=B_{i j k l}-\frac{k}{n-1} \epsilon_{i j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right)
$$

Hence we have

$$
\operatorname{Ric}(B(k))=S-U(k)=S-U-k g,
$$

and

$$
b(k)=\operatorname{Tr}(\operatorname{Ric}(B(k)))=b-n k=-n k \neq 0 .
$$

Also we know that if B is parallel, so is $B(k)$. Accordingly, we are able to apply Proposition 5.1 to such a situation $B(k)=B(R, U(k))$, so we have $b(k)\langle\nabla u(k), \nabla u(k)\rangle=0$, where $u(k)=\operatorname{Tr}(U(k))$. Since $b(k)$ is not zero, we have $\langle\nabla u(k), \nabla u(k)\rangle=0$. By the continuity, $\nabla u(k)$ converges to $\nabla u(0)$ as k tends to +0 and hence we have $\langle\nabla u(0), \nabla u(0)\rangle=0$. It means that the scalar product $\langle\nabla u, \nabla u\rangle=0$. It completes the proof.

Then by this theorem we get the following which will be useful in the proof of our Main Theorem.

Corollary 5.1. Let (M, g) be an $n(\geq 4)$-dimensional semi-Riemannian manifold. Let U be a symmetric tensor in $D^{2} M$ with $u=\operatorname{Tr} U$ and let $B=B(R, U)$ be the conformal curvaturelike tensor. If ∇u is not null and if $\nabla B=0$, then the scalar-like curvature u is constant.

6. Proof of main theorem

In this section we prove the main theorem stated in the introduction. Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold of index $s(0 \leq s \leq n)$ equipped with semiRiemannian metric g and Riemannian connection ∇ and let R (resp. S or r) be the Riemannian curvature tensor (resp. the Ricci tensor or the scalar curvature) on M. Let U be the symmetric tensor in $D^{2} M$ such that $\nabla u=\nabla(\operatorname{Tr} U)$ is not null and let $B=B(R, U)$ be the conformal curvature-like tensor. Now we are going to verify our main Theorem by using several steps given in previous sections.

We assume that B is parallel. Then B satisfies the second Bianchi identity and hence by Theorem 2.1, U is the Weyl tensor.

On the other hand, the scalar-like curvature $u=\operatorname{Tr} U$ for B is constant by Theorem 5.1. This means that the symmetric tensor U becomes the Codazzi tensor. Namely it satisfies

$$
\begin{equation*}
U_{i j k}=U_{i k j} \tag{6.1}
\end{equation*}
$$

By (4.6) and the curvature-like properties of the conformal curvature-like tensor B, we have

$$
\begin{equation*}
\sum_{r, s} \epsilon_{r s} B_{r i k s} U_{r s j}=\sum_{r, s} \epsilon_{r s} B_{r i j s} U_{r s k}=\sum_{r, s} \epsilon_{r s} B_{r j i s} U_{r s k}, \tag{6.2}
\end{equation*}
$$

which means that $\sum_{r, s} \epsilon_{r s} B_{r i j s} U_{r s k}$ is symmetric in all indices i, j and k. On the other hand, by (4.12) we have

$$
\sum_{r, s} \epsilon_{r s}\left\{(n-2) B_{r j k s} U_{i r s}-B_{r j k s} U_{r s i}+B_{r i k s} U_{j r s}+B_{r i j s} U_{k r s}\right\}+\sum_{r} \epsilon_{r} B_{j r} U_{i k r}=0,
$$

where we have used the scalar-like curvature u is constant. Combining the above two equations we have

$$
\begin{equation*}
(n-1) \sum_{r, s} \epsilon_{r s} B_{r j k s} U_{i r s}+\sum_{r} \epsilon_{r} B_{j r} U_{i k r}=0 . \tag{6.3}
\end{equation*}
$$

By Lemmas 5.1 and (6.1), we have the following
Lemma 6.1. Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold. Let U be the symmetric tensor U in $D^{2} M$ and let $B=B(R, U)$ be the conformal-like curvature tensor. Assume that ∇u is not null. If B is parallel, then we have

$$
\begin{equation*}
\sum_{r} \epsilon_{r} B_{i r} U_{r j k}=\sum_{r} \epsilon_{r} B_{j r} U_{r i k}=\sum_{r} \epsilon_{r} B_{k r} U_{r i j} . \tag{6.4}
\end{equation*}
$$

Putting $j=k$ in (6.3), multiplying ϵ_{j} and summing up with respect to the index j, we get

$$
(n-1) \sum_{r, s} \epsilon_{r s} B_{r s} U_{i r s}+\sum_{r, s} \epsilon_{r s} B_{r s} U_{i r s}=0,
$$

and hence we get

$$
\begin{equation*}
\sum_{r, s} \epsilon_{r s} B_{r s} U_{i r s}=0 . \tag{6.5}
\end{equation*}
$$

Next we prove
Lemma 6.2. Under the situation of Lemma 6.1, we have

$$
\begin{equation*}
n \sum_{r} \epsilon_{r} B_{i r} U_{r j k}=b U_{i j k} \tag{6.6}
\end{equation*}
$$

where $b=\operatorname{Tr} \operatorname{Ric}(B)=\sum_{i} \epsilon_{i} B_{i i}$ and $B_{i j}=\sum_{k} \epsilon_{k} B_{i k k j}$.
Proof. Under the above situation, applying $B_{i j}$ to the Ricci identity, we have

$$
\sum_{r} \epsilon_{r}\left(R_{l k i r} B_{r j}+R_{l k j r} B_{i r}\right)=0
$$

Since B is parallel, we get

$$
\sum_{r} \epsilon_{r}\left(R_{l k i r h} B_{r j}+R_{l k j r h} B_{i r}\right)=0
$$

By (4.1) we have

$$
\begin{aligned}
& \sum_{r} \epsilon_{r}\left\{\left(\epsilon_{k} U_{l r h} \delta_{j k}-\epsilon_{k} U_{l j h} \delta_{k r}+\epsilon_{l} U_{j k h} \delta_{l r}-\epsilon_{l} U_{k r h} \delta_{l j}\right) B_{r i}\right. \\
& \left.\quad+\left(\epsilon_{k} U_{l r h} \delta_{i k}-\epsilon_{k} U_{l i h} \delta_{k r}+\epsilon_{l} U_{i k h} \delta_{l r}-\epsilon_{l} U_{k r h} \delta_{l i}\right) B_{r j}\right\}=0
\end{aligned}
$$

and hence we have

$$
\begin{align*}
& \sum_{r} \epsilon_{r i} B_{j r} U_{l r h} \delta_{i k}-\sum_{r} \epsilon_{r i} B_{j r} U_{k r h} \delta_{i l}+\sum_{r} \epsilon_{r j} B_{i r} U_{l r h} \delta_{j k}-\sum_{r} \epsilon_{r j} B_{i r} U_{k r h} \delta_{l j} \\
& -B_{j k} U_{l i h}+B_{j l} U_{k i h}-B_{i k} U_{l j h}+B_{i l} U_{k j h}=0 \tag{6.7}
\end{align*}
$$

Putting $j=k$ in (6.7), multiplying ϵ_{j} and summing up with respect to the index j, we get the conclusion. This completes the proof.

Now let us denote by $M^{\prime \prime}$ the subset in M consisting of points x in $M^{\prime \prime}$ at which $\nabla R(x) \neq 0$. Then on such an open subset $M^{\prime \prime}$ we are able to prove the following lemma.

Lemma 6.3. Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold with generalized non-null stress energy tensor. Let U be the symmetric tensor in $D^{2} M$ and let $B=B(R, U)$ be the conformal curvature-like tensor. If B is parallel, then the generalized non-null stress energy tensor vanishes, that is

$$
\begin{equation*}
B_{i j}=\frac{b}{n} g_{i j}=\frac{b}{n} \epsilon_{i} \delta_{i j} \tag{6.8}
\end{equation*}
$$

on $M^{\prime \prime}$, where b denotes $\operatorname{Tr}(\operatorname{Ric}(B))$.
Proof. On the subset $M^{\prime \prime}$, substituting (6.6) into (6.7), we have

$$
\begin{aligned}
& b\left\{\epsilon_{i} U_{j l h} \delta_{i k}-\epsilon_{i} U_{j k h} \delta_{i l}+\epsilon_{j} U_{i l h} \delta_{j k}-\epsilon_{j} U_{i k h} \delta_{l j}\right\} / n-B_{j k} U_{l i h} \\
& \quad+B_{j l} U_{k i h}-B_{i k} U_{l j h}+B_{i l} U_{k j h}=0 .
\end{aligned}
$$

Transvecting $\epsilon_{i} \epsilon_{k} B_{i k}$ to the above equation, summing up with respect to i and k and taking account of (6.5) and (6.6), we have

$$
\left(b^{2} / n-\langle\operatorname{Ric}(B), \operatorname{Ric}(B)\rangle\right) U_{l j h}=0
$$

where $\langle\operatorname{Ric}(B), \operatorname{Ric}(B)\rangle=\sum_{i} \epsilon_{i} \epsilon_{k} B_{i k} B_{i k}$.

On the other hand, we know that

$$
\begin{aligned}
& \langle\operatorname{Ric}(B)-b g / n, \operatorname{Ric}(B)-b g / n\rangle \\
& \quad=\sum_{i, j} \epsilon_{i} \epsilon_{j} B_{i j} B_{i j}-\frac{2 b}{n} \sum_{i, j} \epsilon_{i} \epsilon_{j} g_{i j} B_{i j}+\frac{b^{2}}{n^{2}} \sum_{i, j} \epsilon_{i} \epsilon_{j} g_{i j} g_{i j} \\
& \quad=\langle\operatorname{Ric}(B), \operatorname{Ric}(B)\rangle-\frac{b^{2}}{n} .
\end{aligned}
$$

Then from these equations we assert the following

$$
b^{2} / n-\langle\operatorname{Ric}(B), \operatorname{Ric}(B)\rangle=0 \text { or } \nabla U=0
$$

Then it can be easily seen that $U_{l j k}=0$ if and only if $\nabla R=0$, because $T=R$ in (1.3). Accordingly, under the assumption of Lemma 6.3 it satisfies $b^{2} / n-\langle\operatorname{Ric}(B), \operatorname{Ric}(B)\rangle=0$ on $M^{\prime \prime}=\{x \in M \mid \nabla R \neq 0\}$. Then the generalized non-null tensor implies $B_{i j}=b \epsilon_{i} \delta_{i j} / n$ on $M^{\prime \prime}$. It completes the proof.

Now we are going to prove the semi-Riemannian version of Theorems due to Derdzinski and Roter [3], and Miyazawa [7].

Now by (6.3) and Lemma 6.2 we have

$$
\begin{equation*}
(n-1) \sum_{r} \epsilon_{r} \epsilon_{s} B_{r j k s} U_{i r s}+a U_{i j k}=0, \quad a=b / n \tag{6.9}
\end{equation*}
$$

Then (4.11) together with (6.8) and (6.9) imply that

$$
\begin{aligned}
\sum_{r} \epsilon_{r} B_{r p k l} U_{j q r}= & \sum_{r, s} \epsilon_{r} \epsilon_{s p}\left(B_{r j s l} \delta_{p k}+B_{s j k r} \delta_{p l}\right) U_{r s q} \\
& -(n-1) \sum \epsilon_{r} B_{r j k l} U_{p r q}-\left(B_{j l} U_{p k q}-B_{j k} U_{p l q}\right) \\
= & -(n-1) \sum_{r} \epsilon_{r} B_{r j k l} U_{p q r}-a\left(\epsilon_{j} \delta_{j l} U_{p k q}-\epsilon_{j} \delta_{j k} U_{p l q}\right) \\
& +\frac{a}{n-1}\left(\sum_{p} \epsilon_{p} U_{j l q} \delta_{p k}-\sum_{p} \epsilon_{p} U_{j k q} \delta_{p l}\right)
\end{aligned}
$$

where we have used the fact that the scalar-like curvature u is constant in Corollary 5.1. Repeating this equation, we get

$$
\begin{aligned}
\sum_{r} B_{r p k l} U_{j q r}= & (n-1)\left\{(n-1) \sum_{r} B_{r p k l} U_{j q r}+a\left(\epsilon_{p} \delta_{p l} U_{j k q}-\epsilon_{p} \delta_{p k} U_{j l q}\right)\right. \\
& \left.-\frac{a}{n-1}\left(\epsilon_{j} \delta_{j k} U_{p l q}-\epsilon_{j} \delta_{j l} U_{p k q}\right)\right\}-a\left(\epsilon_{j} \delta_{j l} U_{p k q}-\epsilon_{j} \delta_{j k} U_{p l q}\right) \\
& +\frac{a}{n-1}\left(\epsilon_{p} \delta_{p k} U_{q j l}-\epsilon_{p} \delta_{p l} U_{j k q}\right)
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
\sum_{r} \epsilon_{r} B_{r p k l} U_{j q r}=-\frac{a}{n-1}\left\{\epsilon_{p} \delta_{p l} U_{j k q}-\epsilon_{p} \delta_{p k} U_{j l q}\right\} \tag{6.10}
\end{equation*}
$$

Now we are going to prove the following:
Theorem 6.1. Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold with generalized non-null stress energy tensor. Let U be the symmetric tensor in $D^{2} M$ and let $B=B(R, U)$ be the conformal curvature-like tensor. Assume that ∇u is non-null vector. If B is parallel, then M is locally symmetric, conformally flat or $\langle\nabla U, \nabla U\rangle=0$.

Proof. By Theorem 5.1 the formula (4.10) can be written as follows:

$$
\begin{align*}
& \sum_{r} \epsilon_{r}\left\{\epsilon_{h} \delta_{i h} U_{p r q} B_{r j k l}+\epsilon_{h} \delta_{j h} U_{p r q} B_{i r k l}+\epsilon_{h} \delta_{k h} U_{p r q} B_{i j r l}+\epsilon_{h} \delta_{l h} U_{p r q} B_{i j k r}\right\} \\
& -\left\{U_{p i q} B_{h j k l}+U_{p j q} B_{i h k l}+U_{p k q} B_{i j h l}+U_{p l q} B_{i j k h}\right\} \\
& +\left\{U_{h i q} B_{p j k l}+U_{k j q} B_{i p k l}+U_{h k q} B_{i j p l}+U_{h l q} B_{i j k p}\right\} \\
& -\left\{\left(\sum_{r} \epsilon_{r} U_{h r q} B_{r j k l}\right) \epsilon_{p} \delta_{p i}+\left(\sum_{r} \epsilon_{r} U_{h r q} B_{i r k l}\right) \epsilon_{p} \delta_{p j}\right. \\
& \left.+\left(\sum_{r} \epsilon_{r} U_{h r q} B_{i j r l}\right) \epsilon_{p} \delta_{p k}+\left(\sum_{r} \epsilon_{r} U_{h r q} B_{i j k r}\right) \epsilon_{p} \delta_{p l}\right\}=0 . \tag{6.11}
\end{align*}
$$

Now first let us calculate term by term in the left side as follows:

$$
\begin{aligned}
\sum_{r} \epsilon_{r} U_{h r q} B_{r j k l} & =\sum_{r} \epsilon_{r} B_{r j k l} U_{h q r}=-\frac{a}{n-1}\left\{\epsilon_{j} \delta_{j l} U_{h k q}-\epsilon_{j} \delta_{j k} U_{h l q}\right\}, \\
\sum_{r} \epsilon_{r} U_{h r q} B_{i r k l} & =-\sum_{r} \epsilon_{r} B_{r i k l} U_{h q r}=\frac{a}{n-1}\left\{\epsilon_{i} \delta_{i l} U_{h k q}-\epsilon_{i} \delta_{i k} U_{h l q}\right\}, \\
\sum_{r} \epsilon_{r} U_{h r q} B_{i j r l} & =\sum_{r} \epsilon_{r} B_{r l i j} U_{h q r}=-\frac{a}{n-1}\left\{\epsilon_{l} \delta_{l j} U_{h i q}-\epsilon_{l} \delta_{l i} U_{h j q}\right\}, \\
\sum_{r} \epsilon_{r} U_{h r q} B_{i j k r} & =-\sum_{r} \epsilon_{r} B_{r k i j} U_{h q r}=\frac{a}{n-1}\left\{\epsilon_{k} \delta_{k j} U_{h i q}-\epsilon_{k} \delta_{k i} U_{h j q}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{r} \epsilon_{r} U_{p r q} B_{r j k l}=\sum_{r} \epsilon_{r} B_{r j k l} U_{p q r}=-\frac{a}{n-1}\left\{\epsilon_{j} \delta_{j l} U_{p k q}-\epsilon_{j} \delta_{j k} U_{p l q}\right\}, \\
& \sum_{r} \epsilon_{r} U_{p r q} B_{i r k l}=-\sum_{r} \epsilon_{r} B_{r i k l} U_{p q r}=\frac{a}{n-1}\left\{\epsilon_{i} \delta_{i l} U_{p k q}-\epsilon_{i} \delta_{i k} U_{p l q}\right\}, \\
& \sum_{r} \epsilon_{r} U_{p r q} B_{i j r l}=\sum_{r} \epsilon_{r} B_{r l i j} U_{p q r}=-\frac{a}{n-1}\left\{\epsilon_{l} \delta_{l j} U_{p i q}-\epsilon_{l} \delta_{l i} U_{p j q}\right\},
\end{aligned}
$$

$$
\sum_{r} \epsilon_{r} U_{p r q} B_{i j k r}=-\sum_{r} \epsilon_{r} B_{r k i j} U_{p q r}=\frac{a}{n-1}\left\{\epsilon_{k} \delta_{k j} U_{p i q}-\epsilon_{k} \delta_{k i} U_{p j q}\right\},
$$

where we have used the formula (6.10).
Substituting these formulas into (6.11), we have

$$
\begin{align*}
- & \left\{U_{p i q} B_{h j k l}+U_{p j q} B_{i h k l}+U_{p k q} B_{i j h l}+U_{p l q} B_{i j k h}\right\} \\
& +\left\{U_{h i q} B_{p j k l}+U_{k j q} B_{i p k l}+U_{h k q} B_{i j p l}+U_{h l q} B_{i j k p}\right\} \\
& +\frac{a}{n-1}\left\{\left(\epsilon_{j} \delta_{j l} U_{h k q}-\epsilon_{j} \delta_{j k} U_{h l q}\right) \epsilon_{p} \delta_{p i}-\left(\epsilon_{i} \delta_{i l} U_{h k q}-\epsilon_{i} \delta_{i k} U_{h l q}\right) \epsilon_{p} \delta_{p j}\right. \\
& \left.+\left(\epsilon_{l} \delta_{l j} U_{h i q}-\epsilon_{l} \delta_{l i} U_{h j q}\right) \epsilon_{p} \delta_{p k}-\left(\epsilon_{k} \delta_{k j} U_{h i q}-\epsilon_{k} \delta_{k i} U_{h j q}\right) \epsilon_{p} \delta_{p l}\right\} \\
& +\frac{a}{n-1}\left\{-\left(\epsilon_{j} \delta_{j l} U_{p k q}-\epsilon_{j} \delta_{j k} U_{p l q}\right) \epsilon_{h} \delta_{i h}+\left(\epsilon_{i} \delta_{i l} U_{p k q}-\epsilon_{i} \delta_{i k} U_{p l q}\right) \epsilon_{h} \delta_{j h}\right. \\
& \left.-\left(\epsilon_{l} \delta_{l j} U_{p i q}-\epsilon_{l} \delta_{l i} U_{p j q}\right) \epsilon_{h} \delta_{k h}+\left(\epsilon_{k} \delta_{k j} U_{p i q}-\epsilon_{k} \delta_{k i} U_{p j q}\right) \epsilon_{h} \delta_{h l}\right\}=0, \tag{6.12}
\end{align*}
$$

where we have used the formula (6.10).
Now let us transvect $U_{p i q}$ to the first part of the left side of (6.12). Then each term of the first part can be given respectively as follows:

$$
\begin{aligned}
& -\sum_{p, i, q} \epsilon_{p i q} U_{p i q} U_{p i q} B_{h j k l}=-\langle\nabla U, \nabla U\rangle B_{h j k l}, \\
& -\sum_{p, i, q} \epsilon_{p i q} B_{i h k l} U_{p i q} U_{p j q}=\frac{a}{n-1} \epsilon_{p q}\left\{\epsilon_{h} \delta_{h l} U_{p k q}-\epsilon_{h} \delta_{h k} U_{p l q}\right\} U_{p j q}, \\
& -\sum_{p, i, q} \epsilon_{p i q} B_{i j h l} U_{p i q} U_{p k q}=\frac{a}{n-1} \epsilon_{p q}\left\{\epsilon_{j} \delta_{j l} U_{p h q}-\epsilon_{j} \delta_{j h} U_{p l q}\right\} U_{p k q}, \\
& -\sum_{p, i, q} \epsilon_{p i q} B_{i j k h} U_{p i q} U_{p l q}=\frac{a}{n-1} \epsilon_{p q}\left\{\epsilon_{j} \delta_{j h} U_{p k q}-\epsilon_{j} \delta_{j h} U_{p h q}\right\} U_{p l q},
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{p, i, q} \epsilon_{p i q} B_{p j k l} U_{p i q} U_{h i q}=-\frac{a}{n-1} \epsilon_{i q}\left\{\epsilon_{j} \delta_{j l} U_{p i k}-\epsilon_{j} \delta_{j k} U_{i l q}\right\} U_{h i q}, \\
& \sum_{p, i, q} \epsilon_{p i q} U_{k j q} B_{i p k l} U_{p i q}=0, \\
& \sum_{p, i, q} \epsilon_{p i q} B_{i j p l} U_{i p q} U_{h k q}=\frac{a}{n-1} \epsilon_{q} U_{l j q} U_{h k q}, \\
& \sum_{p, i, q} \epsilon_{p i q} B_{i j k p} U_{p i q} U_{h l q}=-\frac{a}{n-1} \epsilon_{q} U_{j k q} U_{h l q} .
\end{aligned}
$$

By transvecting $U_{p i q}$ to the second part of (6.12), we have

$$
\begin{aligned}
& \frac{a}{n-1}\left\{-\left(\sum_{q} \epsilon_{q} U_{j l q} U_{h k q}-\sum_{q} \epsilon_{q} U_{j k q} U_{h l q}\right)\right. \\
& \quad+\left(\sum_{i, q} \epsilon_{i q} \delta_{j l} U_{k i q} U_{h i q}-\sum_{q} \epsilon_{q} U_{k l q} U_{h j q}\right) \\
& \left.\quad-\left(\sum_{i, q} \epsilon_{i q} \epsilon_{k} \delta_{k j} U_{l i q} U_{h i q}-\sum_{q} \epsilon_{q} U_{l k q} U_{h j q}\right)\right\}
\end{aligned}
$$

where we have used $u_{q}=\sum_{i} \epsilon_{i} U_{i i q}=0$ in Corollary 5.1, which means that the scalar-like curvature u is constant, in the calculation of the first term of the second part.

Finally, the transvection $U_{p i q}$ to the third part of (6.12) gives

$$
\begin{aligned}
& \frac{a}{n-1}\left\{-\left(\epsilon_{j} \delta_{j l} \sum_{p, q} \epsilon_{p q} U_{p h q} U_{p k q}-\epsilon_{j} \delta_{j k} \sum_{p, q} \epsilon_{p q} U_{p h q} U_{p l q}\right)\right. \\
& \quad-\left(\epsilon_{l} \delta_{l j} \sum_{p, i, q} \epsilon_{p i q} U_{p i q} U_{p i q}-\sum_{p, q} \epsilon_{p q} U_{p l q} U_{p j q}\right) \epsilon_{h} \delta_{k h} \\
& \left.\quad+\left(\epsilon_{k} \delta_{k j} \sum_{p, i, q} \epsilon_{p i q} U_{p i q} U_{p i q}-\sum_{p, q} \epsilon_{p q} U_{p k q} U_{p j q}\right) \epsilon_{h} \delta_{h l}\right\} .
\end{aligned}
$$

Summing up all of these formulas, the transvection $U_{p i q}$ to (6.12) implies

$$
\begin{equation*}
\langle\nabla U, \nabla U\rangle B_{h j k l}=\frac{a}{n-1}\langle\nabla U, \nabla U\rangle \epsilon_{h j}\left(\delta_{h l} \delta_{j k}-\delta_{j l} \delta_{h k}\right), \tag{6.13}
\end{equation*}
$$

where we have put $\langle\nabla U, \nabla U\rangle=\sum_{p, i, q} \epsilon_{p i q} U_{p i q} U_{p i q}$.
Now let us consider only two cases.
For the first let us consider the open set $M-M^{\prime \prime}$. Then on such an open set we know that M is locally symmetric, that is, $\nabla R=0$.

Next we consider on the open set $M^{\prime \prime}=\{x \in M \mid \nabla R(x) \neq 0\}$. Then let us continue our discussion on such an open set $M^{\prime \prime}$. When $\langle\nabla U, \nabla U\rangle \neq 0$, we know from (6.13) that

$$
B_{i j k l}=\frac{a}{n-1} \epsilon_{i} \epsilon_{j}\left(\delta_{i l} \delta_{j k}-\delta_{j l} \delta_{i k}\right)
$$

Then for a curvature-like tensor $B=B(R, U)$ with components $B_{i j k l}$ we have

$$
\begin{aligned}
R_{i j k l}= & \frac{(n-2) a-u}{(n-1)(n-2)} \epsilon_{i} \epsilon_{j}\left(\delta_{i l} \delta_{j k}-\delta_{j l} \delta_{i k}\right) \\
& +\frac{1}{n-2}\left(\epsilon_{i} S_{j k} \delta_{i l}-\epsilon_{i} S_{j l} \delta_{i k}+\epsilon_{j} S_{i l} \delta_{j k}-\epsilon_{j} \delta_{i k} \delta_{j l}\right)
\end{aligned}
$$

$$
-\frac{a}{n-2}\left(\epsilon_{i} \delta_{j k} \delta_{i l}-\epsilon_{i} \delta_{j l} \delta_{i k}+\epsilon_{j} \delta_{i l} \delta_{j k}-\epsilon_{j} \delta_{i k} \delta_{j l}\right)
$$

where we have used the fact that

$$
B_{j k}=a g_{j k}=S_{j k}-U_{j k}
$$

Then the conformal curvature tensor C with component $C_{i j k l}$ is given by

$$
C_{i j k l}=\left\{\frac{(n-2) a-u}{(n-1)(n-2)}-\frac{2 a}{n-2}+\frac{r}{(n-1)(n-2)}\right\} \epsilon_{i} \epsilon_{j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right)=0
$$

That is, M is conformally flat.
Remark 6.1. When M is a Riemannian manifold, the result $\langle\nabla U, \nabla U\rangle=0$ mentioned in Theorem 6.1 implies that the symmetric tensor U is parallel on M, that is $\nabla U=0$. Then the assumption of conformally symmetry $\nabla B=0$ implies that $\nabla R=0$, that is M is locally symmetric.

Corollary 6.1. Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold. If ∇r is not null, where r is the scalar curvature, and if the conformal curvature tensor C is parallel, then M is locally symmetric or conformally flat.

Proof. Let M^{c} be the subset of M consisting of points x at which $C(x) \neq 0$.
Now first let us consider our proof on such an open set M^{c}. We put $B=B(k)=$ $B(R, U(k))$, where $U(k)=S+k g, k$ is a constant. So we have

$$
\begin{aligned}
B_{i j k l}= & R_{i j k l}-\frac{1}{n-2}\left\{\epsilon_{i}\left(U_{j k} \delta_{i l}-U_{j l} \delta_{i k}\right)+\epsilon_{j}\left(U_{i l} \delta_{j k}-U_{i k} \delta_{j l}\right)\right\} \\
& +\frac{1}{(n-1)(n-2)} u \epsilon_{i j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right)
\end{aligned}
$$

where $U_{j k}=S_{j k}+k \epsilon_{j} \delta_{j k}$ and $u=u(k)=\operatorname{Tr} U(k)=r+n k$. We have then

$$
B_{i j k l}=C_{i j k l}-\frac{k}{n-1} \epsilon_{i j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right), \quad B_{j k}=C_{j k}-k \epsilon_{j} \delta_{j k}=-k \epsilon_{j} \delta_{j k}
$$

because of $\operatorname{Ric}(C)=0$. So we see that $b(k)=-n k \neq 0$. This means that the generalized stress energy tensor is non-null. Since C is parallel, so is also B. Moreover, $\nabla u=\nabla r$ is non-null by the assumption. Then by Theorem $6.1, M$ is locally symmetric, conformally flat or $\langle\nabla S, \nabla S\rangle=0$. But on M^{c} the locally symmetry of M implies that the Ricci tensor S is parallel, that is $\nabla S=0$ on M^{c}.

On the complement $M-M^{c}$ we have $C=0$, that is, M is conformally flat. If $M-M^{c}$ is empty, then it satisfies $\nabla R=0$ non M. This completes the proof.

Acknowledgments

The present authors wish to express their gratitude to the referee for his valuable comments to our manuscript.

References

[1] A.L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987.
[2] J.P. Bourguignon, Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein', Invent. Math. 63 (1981) 263-286.
[3] A. Derdziński, W. Roter, On conformally symmetric manifolds with metrics of indices 0 and 1, Tensor, N.S. 31 (1978) 255-259.
[4] A. Derdziński, C.-L. Shen, Codazzi tensor fields, curvature and Pontrygin forms, Proc. London Math. Soc. 47 (1981) 15-26.
[5] E. Glodeck, Some remarks on conformally symmetric Riemannian spaces, Colloq. Math. 23 (1971) 121-123.
[6] S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, London, New York, Melbourne, 1973.
[7] T. Miyazawa, Some theorems on conformally symmetric spaces, Tensor, N.S. 32 (1978) 24-26.
[8] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, London, 1983.
[9] B. O'Neill, The Geometry of Kerr Black Holes, A K Peters, Ltd., Wellesley, 1995.
[10] P.J. Ryan, A note on conformally flat spaces with constant scalar curvature, in: Proceedings of the Thirteenth Bi. Sem. of the Canadian Math. Cong., vol. 2, 1972, pp. 115-124.
[11] Y.J. Suh, Y.S. Choi, H.Y. Yang, On space-like hypersurfaces with constant mean curvature in a Lorentz manifold, Houston J. Math. 28 (1) (2002) 47-70.
[12] Y.J. Suh, J.-H. Kwon, Y.-S. Pyo, On semi-Riemannian manifolds satisfying the second Bianchi identity, J. Korean Math. Soc. 40 (2003) 129-167.
[13] Y.J. Suh, J.H. Kwon, Conformally recurrent semi-Riemannian manifolds, Rocky Mountain J. Math. 35 (2005) 285-307.
[14] Y.J. Suh, H.Y. Yang, On conformal-like symmetric Riemannian manifolds, Math. J. Toyama Univ. 24 (2001) 107-133.
[15] U. Simon, Compact conformally Riemannian spaces, Math. Z. 132 (1973) 173-177.
[16] S. Tanno, Curvature tensors and covariant derivative, Annali di Math. Pura ed Appl. 96 (1973) 233-241.
[17] H. Weyl, Reine Infinitesimal geometrie, Math. Z. 26 (1918) 384-411.
[18] H. Weyl, Zur Infinitesimal geometrie: Einordnung der projecktiven und der Auffassung, Göttigen Nashr, 1921, pp. 99-112.
[19] K. Yano, The Theory of Lie Derivatives and Its Applications, North-Holland, Amsterdam, 1957.
[20] K. Yano, S. Bochner, Curvature and Betti Numbers, Ann. of Math. Studies No. 32, Princeton University Press, 1953.

[^0]: Th This work was supported by grant Proj. No. R14-2002-003-01001-0 from Korea Research Foundation, 2005.

 * Corresponding author. Tel.: +82 53950 5315; fax: +82 539506306.

 E-mail addresses: yjsuh@mail.knu.ac.kr (Y.J. Suh), jhkwon@biho.daegu.ac.kr (J.-H, Kwon).

