Available online at www.sciencedirect.com

. JOURNAL OF
@i GEOMETRY ano

PHYSICS

ELSEVIER Journal of Geometry and Physics 56 (2006) 875-901

www.elsevier.com/locate/jgp

Conformally symmetric semi-Riemannian
manifolds®

Young Jin Suf*, Jung-Hwan KwoR, Hae Young Yang
& Department of Mathematics, Kyungpook University, Taegu 702-701, Korea
b Department of Mathematics Education, Taegu University, Taegu 705-714, Korea

Received 14 March 2005; received in revised form 25 April 2005; accepted 11 May 2005
Available online 1 July 2005

Abstract

In this paper we introduce the concept of conformal curvature-like tensor on a semi-Riemannian
manifold, which is weaker than the notion of conformal curvature tensor defined on a Riemannian
manifold. By such kind of conformal curvature-like tensor we give a complete classification of con-
formally symmetric semi-Riemannian manifolds with generalized non-null stress energy tensor.
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1. Introduction

Let M be am(>4)-dimensional semi-Riemannian manifold with a metric tegsamd a
Riemannian connectiovi and letrR (resp.S or r) be the Riemannian curvature tensor (resp.
the Ricci tensor or the scalar curvature)d@nAny two self-adjoint (1,1) tensor fields B
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on a semi-Riemannian manifold# g) we define Kulkrani-Nomizu tensor produ® B
of End A%TM in such a way that

(A®B)(X,Y) = 3(AXABY + BYAAY).

Then the conformal curvature tens@rof a semi-Riemannian manifold4, g) acting on
two-forms is given by

C=R-2(n—-1)tid®S+ (n — 1) X(n — 2)"1ridid,

where id denotes the identity tensor of type (1,1) &) ). The conformal curvature tensor
C should be the trace free part of the Riemannian curvature téhsoabove orthogonal
decomposition, that is, Ri€() = 0, and isconformally invariant. Moreover, the conformal
curvature tensoc, if n is at least 4, vanishes if and only if the metricdasyformally
flat.

Such aconformal flammess is equivalent to the vanishing of the Weyl conformal curvature
tensor in dimension not less than 4. This should be an interesting subject, because there
are many other examples ebnformally flat manifolds which are not spaces of constant
curvature, and because of its important applications to physic$g:8)).

Now the component§;;; of the conformal curvature tens@rcan be written by

1
Ciju = Riju — m(Silgjk — Sikgji + Sjkgit — Sjigik)
r
(n = 1)(n — 2) 18k~ Bik&R) 1.1
+ =D — 2)(gzlg]k 8ik&j1) (1.1)

where R (resp.S;;) denotes the components of the curvature te®§oesp. the Ricci
tensorS) on M.

We say thai is conformally symmetric if the conformal curvature tensdris parallel,
that isVC = 0. Such kind of conformally flat or conformally symmetric semi-Riemannian
manifolds have been studied by Beg&g Bourguignon[2], Derdzihski and Sherj4],
Ryan[10], Simon[15], Weyl [17,18], Yano[19], Yano and BochndR0]. More generally,
conformally symmetric semi-Riemannian manifolds with indices 0 and 1 are investigated
by Derdzhski and Rotef3]. In particular, in semi-Riemannian manifolds with index O,
which are also said to be Riemannian manifolds, Dérslkiiand Rotef3] and Miyazawa
[7] proved the following

Theorem A. An n(>4)-dimensional conformally symmetric manifold is conformally flat or
locally symmetric.

In particular, Derdziski and Rote[3] investigated the structure of analytic conformally
symmetric indefinite Riemannian manifold of index 1 which is neitlw@formally flat nor
locally symmetric.
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The symmetric tensdk of type (0,2) with component&;; is called theWeyl tensor, if
it satisfies

1
Kiji — Kijj = m(klgij — kjgin): (1.2)

wherek = TrK and K;; (resp.k;) are components of the covariant derivatv& (resp.
Vk).

On the other hand, in Wey17,18]it can be easily seen that the Ricci tensor is equal to
the Weyl tensor when we only considergp-4)-dimensional conformally flat Riemannian
manifold.

Now as a generalization of conformal curvature tensor we introduce a new notion of
conformal curvature-like tens@(7, U), which is defined if12—-14] due to the present
authors. It was given as follows:

Let T be any curvature-like tensor (see its define in Sec#oim detail) and letU be
any symmetric tensor of type (0,2) satisfying(VU) = C23(VU), whereC12 andCa3
denote the metric contraction defined by 2¢; VU(E;, E;, X) = >, ;VU(X, E;, E;) for
any vectorX atx and for any orthonormal basf£ ;} for the tangent spacg M to M atx.
Then let us define the tensBr= B(7, U) with componentsB;;; such that

1
Bijii = Tiju — m(Uilgjk — Uigji + Ujkgit — Ujigix)

+ m(é’ﬂgﬂc — gik&jt) (1.3)
whereu = TrU. Then such atensd@ = B(T, U) is said to be theonformal curvature-like
tensor, which is a general extension of the usual conformal curvature tehisofl.1). For
this kind of conformal curvature-like tensB(7, U) we also define the notion ebnformally
flat or conformally symmetric according a3 = 0 or VB = 0 respectively.

The Ricci-like tensor Rid) of B is defined by tfZ— B(Z, X)Y}. Then the components
B;j of Ric(B) is defined byB;; = >, € Bijk. Thus by(1.3), its components can be written
asB;; = T;j — Ujj, WhereT,-j = Zk €k Thijk -

Now the tensor Ridg) — %g defined on a semi-Riemannian manifold is said to be the
generalized stress energytensor for the conformal curvature-like tengoe= B(R, U), where
b = Tr(Ric(B)) = C12(Ric(B)). The physical meaning of such kind of stress energy tensor
can be explained in more detail as follows:

In general relativity there can be no universal a priori geometry, since for any spacetime
the Einstein equation already determines the stress energy ®nsbich is given by

T = ! Ric 1S
~ 8 28 )

whereS = C12(Ric) denotes the scalar curvature. This is an Einstein equation between the
stress energy tensor in physics and the Ricci curvature in differential geometry of spacetime.
Thus a given spacetime can be used to model matter only in the unlikely cagétpgiens

to be a physically realistic stress energy tensor (8¢£9).
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When the curvature-like tensdi(resp. the symmetric tensdr) mentioned above is
equal to the curvature tensBfresp. the Ricci tensd), thenB(R, S) can be identified with
the conformal curvature tens@r Moreover, a semi-Riemannian manifdiflis said to be
locally symmetric if its derivative of the curvature tens@rvanishes, that isy R = 0.

Now in this paper we want to make a generalization of Theorem A in the direction of
semi-Riemannian manifolds with symmetric conformal curvature-like tensor. In order to do
this we need a geometric physical condition, that is giweralized non-null stress energy
tensor which is weaker than the notion efress energy tensor given in B.O’Neill [8,9].

That is, we show the following

Theorem. Let M be an n(>4)-dimensional semi-Riemannian manifold with generalized
non-null stress energy tensor. Let U be the symmetric tensor in D®M and its trace Vu is
non-null and let B = B(R, U) be the conformal curvature-like tensor. If it is conformally
symmetric for the conformal curvature-like tensor B(R, U), then it is locally symmetric,
conformally flat or (VU, VU) = 0.

In the proof of our Theorem, we have used a us€follary 5.1given in Sectiorb and
Lemma 6.3and Theorem 6.1 given in Secti@Now we will give its brief outline of the
proof as follows:

In Corollary 5.1 under the assumption th& is non-null we have proved the scalar-
like curvatureu is constant. Moreover, inemma 6.3if the conformal curvature-like tensor
B = B(R, U) is symmetric on a semi-Riemannian manifai] that isVB = 0, we have
proved that the generalized non-null stress energy tensor vanishesWvisemot locally
symmetric. By using such results, in Theorem 6.4 we are able to show tkatonformally
flat whenaM is not locally symmetric.

If M is a Riemannian manifold, the res(itU, VU) = 0 in our Theorem implies that the
symmetric tensot/ is parallel onM. From this together with the assumption of conformal
symmetryV B = 0 we can assert th& R = 0, that isM is locally symmetric.

2. Preliminaries

Let M be ann(>2)-dimensional semi-Riemannian manifold of index0 < s < n)
equipped with semi-Riemannian metric tenSoand letR (resp.S or r) be the Riemannian
curvature tensor (resp. the Ricci tensor or the scalar curvaturé) on

Now we can choose alocal fie}& ;} = {E;, .. ., E,} of orthonormal frames on a neigh-
borhood ofM. Here and in the sequel, the Latin small indiéeg , . . ., run from 1 ton.
With respect to the semi-Riemannian metric we hg#;, E;) = €;3 i, where

€j=—l1orlaccordingas& j <sors+1<j<n.

Let {0;}, {6;;} and{®;;} be the canonical form, the connection form and the curvature
form onM, respectively, with respect to the figlf ;} of orthonormal frames. Then we have
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the structure equations

do; + ZEj@ij/\Qj =0, 9,']' + jS =0, d@ij + Zeké),-kAij = Ojj,
J k

1
O = 5 Z €k Rijr1 Ok NGy,
k.l

wheree;; i = €i€;. . .€¢ and R;;; denotes the components of the Riemannian curvature
tensorR of M(See[9,11,12,14]).
Now, letC be the conformal curvature tensor with compon&njg onM, which is given

by

1
Cijtii = Riju — m(ejsilajk —€;Siudj1 + €S b — €iSjibik)

’

—————¢;i(8ud ik — Sikd 1), 2.1
+ -1 — 2)611( il0 jk ik Jl) (2.1)
whereS;; denotes the components of the Ricci tenSavith respect to the orthonormal
frame field{E ;}.

Remark 2.1. If M is Einstein, the conformal curvature tengosatisfies

,
Cijut = Riju — meij(ailsjk — ik j1).

This yields that the conformal curvature tensor of an Einstein Riemannian manifold is

the concircular curvature orf20]. In particular, ifM is a space of constant curvature, the

conformal curvature tensor vanishes identically.

Let D"M be the vector bundle consisting of differentiabtdorms and DM =
Yo oD'M, where DM is the algebra of differentiable functions @f For any tensor
field K in D" M the componentX i, of the covariant derivativ® K of K are defined by
(for simplicity, we consider the cage= 4)

Z € Kijunbn = dKjig — Z en(Knjiibni + KinkiOnj + KijniOnk + KijknOni).-
3 I

Now we denote by'M the tangent bundle a¥/. Let T be a quadrilinear mapping of
TM xTM x TM x TM into R satisfying the curvature-like properties:

@) T(X.Y,Z,U)=-T(Y,X, Z,U) = —T(X, Y, U, Z),
(b) T(X,Y,Z,U)=T(Z, U, X, Y),
() T(X,Y, Z,U)+ T(Y, Z, X, U) + T(Z, X, Y, U) = 0.

ThenT is called thecurvature-like tensor on M (see B.O. N'eill[8], for example). For
an orthonormal fram¢E ;}, let 7;;; be the components dfassociated with the orthonor-
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mal frame. Accordingly, the componerifgy; are given byl = T(E;, E;, Ei, E;). The
components of corresponding to the conditions (a), (b) and (c) are given by respectively

T = —Tjiw = —Tijix (2.2)
Tiji = Twij = Tikjis (2.3)
Tijxt + Tiit + Triji = 0. (2.4)

If the componentg;; of atensofin D*M = @*T* M satisfy(2.2), (2.3) and (2.4then
it becomes a curvature-like tensor. LE&¥ be the ring consisting of all smooth functions on
M and letT* M be the module oveFM consisting of all tensor fields of type §) defined on
M. Let H = H(M, g) be the vector subbundle iBM which, at any poink in M, consists
of all trilinear mappings of T, M into R such tha&(X, Y, Z) = &(X, Z, Y) for any vectors
atx and

zzeré(Ers E,, X) = Zer%—(xv E,, Er)

for any vectorX atx and for any orthonormal basj# ;} for the tangent spacg M to M at
X.

For any integers andb such that 1< a < b < s the metric contraction reduced byand
bis denoted by,,: T; M—T_,M with respect to the orthonormal frangg ;}. In terms of
the metric contraction, the sectigrin C*°(H) satisfies tha(X, Y, Z) is symmetric with
respect ta andZ and Z12(&) = Co3(£).

Let U be a symmetric tensor of type (0,2) i?M with componentd;i(= Ujy) =
U(E;, E;). The symmetric tensdy in D?M is called theWey! rensor if its components of
the covariant derivativ& U of U satisfy

1 1
72(’1 — 1)uk€i8ij =Ujj — 72(’1 — 1)Mj€i8ik (2.5)
whereu = C12U. In particular, ifu is constant, thew/ is called theCodazzi tensor. Now
we define the covariant derivativéU of the symmetric tensot/ in such a way that
VU(X,Y, Z) = VxU(Y, Z). SinceU is symmetric, so i& U with respect t&@ andZ. More-
over, we know that

Uijk —

Ve U(E;, Ej) = VU(E, E;, Ej) = Uiji(= Ujix).

Then by(2.5)and the expression 8fU it can be easily seen that
1
zk:GkUkjk = Suj»

Whereuj = Zl Uy = Zl GIVU(E]‘, E;, E)). This meansC12(VU) = C23(VU) /2. Ac-
cordingly, we know thaV U is the section of the bundié. For such a pairf; U), we define
the tensoB = B(T, U) with componentsB;;; by
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1
Bijki = Tiju — m(GiUﬂc(Sil —€Ujbix +€;Uydj — €;Uikd 1)

u
————¢;i(Bub k= 8ikd 1) 2.6
+ (n _ 1)(n — 2)€lj( 10 jk k jl) ( )
which is said to be theonformal curvature-like tensor for T andU. The Ricci-like tensor
Ric(B) of B is defined by fZ— B(Z, X)Y}. Then the componentB;; of Ric(B) is given
by Bij = > i €x Biijk- By (2.6), we get

Bjj = Tij — Ujj. (2.7)

Remark 2.2. For a given semi-Riemannian manifaldl with Riemannian connectiow,
there exist so many kind of pair%,(U) for the curvature-like tensdf and the symmetric
tensor of DM such thatvU is contained inC*°(H). Among them the most popular pair
is (R, S). In particular, letU be the Weyl tensor and &t be the parallel symmetric tensor
in D°M. ThenU + K is also the Weyl tensor.

For an orthonormal framgk ;}, let6g = {6}, 6 = {6;;} and® = {®;;} be the canonical
form, the connection form and the curvature formiénin the same way as we associate a
curvature form® to the Riemannian curvature tenghive associate a two-fordy = {®;;}
to the curvature-like tensdrin the following

Djj = Z e TijuOk N0, (2.8)
kol

which is the analogue to the curvature foérexcept for the coefficient. So it is called the
curvature-like form for the curvature-like tensdf. The canonical fornfy = {6;} can be
regarded as a vector R" and the connection for = {6;;} and the curvature-like form
&1 = {&;;} can be regarded as<n skew-symmetric matrices. We call the equation

d@T = @T/\Q — 9/\@7" (29)
thesecond Bianchi equation for the curvature-like forn®;. Then it is not difficult to assert

the following proposition:

Proposition 2.1. On the semi-Riemannian manifold M, let T be the curvature-like tensor
in D*M on M. Then the following assertions are equivalent:

(8) The curvature-like form @ satisfies the second Bianchi EQ.(2.9).
(b) Its components satisfy

Tijian + Tijink + Tijuia = O. (2.10)
Now let 7 be the curvature-like tensor iB*M and let¥ be the associated curvature-

like form with 7. The mapping : A*T, M— A3T, M defined by the divergencé(¥r) =
—(C15VT), whereC,;, is the metric contraction defined I6y,,: T, M—T, ,M. This is a
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generalization of the well-known differential operators®h For the orthonormal frame
{E;}, in terms of coordinates, the components@¥fr) is given by

S(¥r)ijk = — Z €1Tijui-
/

If 8(¥7) = 0, then the form&y is said to beroclosed.

Remark 2.3. On the Riemannian manifold{, g) with Riemannian connectiow, it has a
formal adjointv* : T*M x T M— T M defined as follows: for any vector fields, ..., X,
and anyx in T*M x T M, V*« is given by

Via(X1.....X;) == aVga(E. X1..... X,),
k

where{E} is the orthonormal frame. Namel,*«(X 4, .. ., X,) is the opposite of the trace
with respect tq of the D°M valued two-form

(X, Y)—Vxa(¥, X1, ..., X,).

For the exterior differential: D" M— D’*+1M let us denote by: D" M— D"~ M its formal
adjoint. For the orthonormal ba$£ ;} of T, M at any pointr, the components @{¥r) are
given by

SWr(T)(X. Y. 2) = = Y Ve, ¥r(T)(Ex X. Y. Z).
k

Accordingly, the above operatéron semi-Riemannian manifolds is a formal analogue of
the adjoint operator to the exterior differentibn a Riemannian manifold. See Be§sg
for example.

The semi-Riemannian manifold4, g) is said to havéiarmonic-like curvature for T if
8(¥r) = 0. In particular, ifT = R, then we say thatM, g) hasharmonic curvature( See
Bessd1]).

Now, the concept of Ricci-like tensors for the curvature-like tensor on the semi-
Riemannian manifold is introduced. L&t be ann-dimensional semi-Riemannian man-
ifold with semi-Riemannian metrig and curvature like tensdf with components; ;.

The tensor RicT) associated with the curvature-like tengts defined by

Ric(T)(X,Y) = tracdZ—T(Z, X)Y},

whereT (Z, X)Y isavectorfield defined bf(X, Y, Z, W) = g(T(X, Y)Z, W) forany vector
fields X, ¥, Z andW. Then Ric() is called theRicci-like tensor for T. By the definition,
the Ricci-like tensor Rid() of T is a symmetric tensor of type (0,2) and its compon&its
are given byl;; = >, €xTiijx. Moreover, by(2.3)we know thatl;; = T;;. The scalar-like
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curvaturer associated withT" is defined byr = C12(Ric(T)) = 3_; x € u Tk If we follow

new extended formulas in a semi-Riemannian manifold, we are able to show the following
theorem in[12], which gives an extension of the pafd#d] discussed in its Riemannian
version,

Theorem 2.1. Let M be an n(>4)-dimensional semi-Riemannian manifold and let T be the
curvature-like tensor and let U be the symmetric tensor in D®M. If any two assertions in
the following are satisfied, then another one holds true:

(8) T satisfies the second Bianchi identity,
(b) The conformal curvature-like tensor B = B(T, U) satisfies the second Bianchi identity,
(¢) U is the Weyl tensor.

3. Weyl tensors

Let M be am(>2)-dimensional semi-Riemannian manifold of index@< s < n, with
Riemannian connectiow and letR(resp.S or r) be the Riemannian curvature tensor (resp.
the Ricci tensor or the scalar curvature)dn

Now let T be a curvature-like tensor and Eétbe a symmetric tensor of type (0,2) such
that Z12(VU) = C23(VU). In this section we are going to prove some lemmas concerned
with such a symmetric tensd@f. From the conformal curvature-like tensBr= B(T, U)
given in (2.6), we know thatB = B(T, U) is the curvature-like tensor for the paff, (V).
Moreover, we have

Ric(B) = Ric(T) — U. (3.1)

In fact, puttingi =/, multiplying ¢; and summing up with respect to the indein
(2.6)we getBj = Tjx — Uj, whereT; and B, are components of the Ricci-like tensors
Ric(T) = C14(T) and RicB) = C14(B).

Now let us put = C12(Ric(T)), b = C12(Ric(B)) andu = C12(U). Then by(3.1)we have

b=t—u. (3.2)

Remark 3.1. For the conformal curvature tens6r the Ricci-like tensor Riaf) satisfies
Ric(C) = 0.

When the symmetric tensa@f in DM is the Weyl tensor, we are going to prove some

lemmas, which will be used in Secti@nas follows:

Lemma 3.1. Let M be an n(>2)-dimensional semi-Riemannian manifold. If U is the Weyl
tensor, we obtain

Z €r(RriktUrj + RyitjUpk + RyijUpi) = 0. (3.3)

r
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Proof. By thedefinition (2.5)we have

Uijk — Uikj = (ureidij — u j€idi).

1
2n — 1)
Differentiating covariantly, we get

Uijit — Uikji = (uri€idij — u ji€idix). (3.4)

1
2n — 1)

Interchanging the indicésand!/ and substituting the resulting equation from the above
one, we obtain

Uijri — Uijie + Uitjk — Uiji =

201 = 1)(ujk€i3i1 — uji€idix),

where we have used the propeuty is symmetric with respect tbandj, because: is the
function. So we have
The left hand side

(Ui — Uiji) + (Uigjx — Uin) + Uikj — Uikji)
= (Uijt — Uijir) + Witjk — Uingj)

1
+ [{Uiuj + m(ukjéi&‘z - M1j€i5ik)} - Uikjl]

- Z Er(leirUrj + leerir) - Z 6r(RkjirUrl + RkjlrUir)
r r

1
=Y e(RjirUnk + RjuneUir) + m(ukjéi&'l — uyj€idik)

r

- Z(leirUrj + RjiirUpk + RyjirUp) + 3 (urjeidin — uij€idin),

1
- (n—1)
where the second equality follows fraf®.4) and the third equality can be derived from the
Ricci identity for the tensot/;;. Accordingly, we have3.3), which completes the proof.
O

Lemma 3.2. Let M be an n(>2)-dimensional semi-Riemannian manifold and let B =
B(R, U) be the conformal curvature-like tensor for the Riemannian curvature tensor R and
any symmetric tensor U in D*M. If U is the Weyl tensor, then we obtain

Z 6r(BriklUrj + ByitjUnk + Brijk Uy) =0, (3.5)

r
ZEerrUrz = ZGrBerrk. (3.6)
r r
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Proof. By the assumption of this Lemma, the componentB afe given by
1
Bijii = Riji — m(Einkail —€Ujbix + €;Und jx — €;Uir8 1)

+ mezj(&la]’k — 8ikdji). (3.7)

SubstitutingB;;; into the left hand side of3.5) and using(3.3), we get the equation
(3.5). Since the tensdy;; is symmetric and the tens@;; is skew-symmetric indicesand
Jj»we have) ,  e,;BaUrs = 0. Puttingi = j, multiplyinge; and summing up with respect
to i in (3.5), from the above property together wih); = > €, B;;j, we get(3.6). This
completes the proof. O

4. Conformally symmetric

Let M be am(>2)-dimensional semi-Riemannian manifold of index@< s < n, with
Riemannian connectiow and letR(resp.S or r) be the Riemannian curvature tensor (resp.
the Ricci tensor or the scalar curvature)Mn

Now, letU be a symmetric tensor of type (0,2) such thégi2VU) = Co3(VU). We put
u = C1oU. For such a pairR, U) we define a tensaB = B(R, U) with componentsB; i,
with respect to the fieldE;} of orthonormal frames by

1
Bijxi = Riju — m(GinkSil —€Ujbik + €;Undjx — €jUid 1)

+ mﬂj(&'laﬂc — 8ikd 1) 4.1)

We have then
Ric(B) = § — U. (4.2)

In fact, putting = /, multiplyinge; and summing up with respectto the indéx(4.1)we
getBjr = Sj — Uj, whereB , are components of the Ricci-like tensor RBy(= C14(B).

Now let us pub = C12(Ric(B)) = Tr(Ric(B)) andu = C12(U) = TrU. Then by(4.2)we
have

b=r—u. 4.3)

By Theorem 2.1if the curvature-like tensoB = B(R, U) for the pair R, U) satisfies
the second Bianchi identity, thais the Weyl tensor. Of course the Ricci tensas the
Weyl tensor. We remark that the restrictior> 4 of the dimension is here necessary.

The semi-Riemannian manifold is said to beconformally symmetric, if the confor-
mal curvature-like tensaB is parallel, i.e., ifVB = 0. Concerned with such a conformal
symmetry of the conformal curvature-like tengwe prove the following:



886 Y.J. Suh et al. / Journal of Geometry and Physics 56 (2006) 875-901

Lemma 4.1. Let M be an n(>4)-dimensional semi-Riemannian manifold. If M is confor-
mally symmetric for B, then

Z €r(BriktUpji + BritjUrki + BrijkUnn) = 0. (4.4)

r

Proof. The Riemannian curvature tens®isatisfies the second Bianchi identity. On the
other hand, since the conformal curvature-like tenB(R, U) is parallel, it also satisfies
the second Bianchi identity dyroposition 2.1Accordingly, the symmetric tenséf is the
Weyl tensor byTheorem 2.1because ot > 4. By Lemma 3.2ve have

Z 6r(BriklUrj + BriljUrk + Briijrl) = 07
-

from which together with the assumption tiBais parallel we have the equati¢h.4). This
completes the proof. [

Now we havezm €rsBrsiaUrsn = 0, becauseB;ji; is skew-symmetric with respect io
andj andU;j;, is symmetric with respect t@andj. Puttingi = j, multiplyinge;, summing up
with respect ta in (4.4)and applying the above property to the obtained equation, we have

ZeerrUrlh = ZGrBlrUrkh- (45)
r r

SinceU is the Weyl tensor, it satisfi€s,, €, U = ux/2. Puttingl = i, multiplying ¢,
summing up with respect fon (4.4)and applying the property’, €, Uk, = ux/2, we have

1
Z 6rs(BriksUjrs - Bristkrs) = _5 Z erBrijkur' (46)
s r

Puttingi = j, multiplying ¢; and summing up with respect tin (4.6), we have

2 Z €rsBrsUprs = Z € By, (47)
s r

because we S€E,,, €. BriksUps = 0.
Summing up the above formulas, we prove the following which will be useful in Section
5.

Lemma 4.2. Let M be an n(>4)-dimensional semi-Riemannian manifold. If M is confor-
mally symmetric for the conformal curvature-like tensor B(R, U), then we obtain

20— 1) e(BirUjir — BirUjir) = Y _ €rj(Birtty8jx — Biyit,8y5). (4.8)
r r

Proof. SinceM is conformally symmetric for the conformal curvature-like tenB@R, U),
we haveB;ju, = 0 andB;ju,, = 0. Accordingly, we have b{4.1)

1
Rijiin = - 2(6jUi1h5jk — €;Uiné i + €U jnbis — €U jindix)
1
- muh@j(&'la/‘k - 3ik5jl)- (4-9)
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On the other hand, by the Ricci identity, we get

Z er(RphirBrjkl + RphjrBirkl + RphkrB[jrl + Rpherijkr) =0.

r

Differentiating covariantly and taking account Bfy;, = 0, we have

Z 6r(RphirqBrjkl + Rphjrq Bir + Rphqu Bijrl + Rphqu Bijkr) =0

By (4.9)and the above equation we have

Z 6r[{(eh Uprqghi —€p Upiqahr + 6pUhiq(Spr - 6pUhrqui)

-
+ ug€np (8 prdni — 8pidnr)/(n — 1)} Brjt + {(€nU pryOnj
—€nUpjgSnr + €pUnjqd pr — €pUnrgpj) + 1q€np(8prdnj — 8pjdnr)/(n — 1)} Birki
+ {(€nUprgSnk — €nU prgSnr + €pUnigSpr — €pUnrgSpk)
+ug€np 8 pronk — S pidnr)/(n — L)} Bijrt + {(€nU prgSni — €U pigSnr
+€pUnig8pr — €pUnrgSp1) + ug€np(8prdni — 8pidnr)/(n — 1)} Biji] = 0. (4.10)

Puttings = i, multiplying ¢; and summing up with respect t@nd taking account of the
first Bianchi identity, we have

Z €r {(I’l - Z)BrjklUprq - Z esp(Brjslspk + stkrgpl)Ursq
r s

+ (BrpklUrjq + BrjplUrkq + BrjkpUrlq)} + (leUpkq - Bijplq)
1
— muqep(le‘spk — Bjkfspl) =0.
Taking account of4.4), the above equation is deformed as
Z €r {(n - 1)BrjklUprq - Z Esp(Brjxl‘Spk + stkrSpl)Urxq + BrpklUrjq}
r S

1
+ (leUpkq — Bijplq) — muqep(BﬂSpk — Bjk5pl) =0. (4.11)

Puttingl = ¢ in the above equation, multiplying and summing up with respect tp
we get
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Z €rs {(n - 2)BrjksUprs - Z EtUrstep(Brjst‘spk + stkrspt)
t

ns

+ (BrpksUrjs + Brjps Uris + Brjkp Urss)} + Z Er{(Bjr Upkr - Bjk Uprr)

r
1
— murép(Bjr(Spk — B,k(Spr)} =0. (412)

Taking account of the fact tha;;; is skew symmetric with respect taand! and using
(2.5), we get the following relation:

1
> €rsiBjrstUps = 20— 1) > eBjeur. (4.13)

1,8t

In fact, we get

. 1
The left hand side= > rsiBjrsi(Urst — Urs)

st

1

= m ; Est Bjrst(uTSrs — Ms(grt)

1
m Z: Et(Bjtut + Bjtut)

Making use of(4.13)and calculating straightforwardly, we can obtain

Z €rs {(l’t - 2)BrjksUprs - Brjks Ursp + Brpks Ujrs + BrjpsUkrs}
P

1
+ Z er(EBrjkpur + Berpkr)
;

1
— m {(n — 3)Bjkblp + Zerijrur(Spk} =0. (414)

Interchanging indicegandk in (4.14)and subtracting the resulting equation from the
original one, using2.5) and (4.6)we have

(n— 1)2 Er(Bpjkr + Bjipr — Bpkjr)ur +20n — 1)Z€r(Berpkr
r r
— BuUpjr) — €p > _ rtr(BjrSpk — Bir8)j) = 0.
r

Making use of the first Bianchi identity foB, we have(4.8). This completes the
proof. O
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5. Scalar-like curvatures

Let M be ann(>4)-diemnsional semi-Riemannian manifold of index0 < s < n)
equipped with semi-Riemannian metgiand Riemannian connectidand letR (resp.S or
r) be the Riemannian curvature tensor (resp. the Ricci tensor or the scalar curvatufe) on
Let U be the symmetric tensor iB2M and letB = B(R, U) be the conformal curvature-like
tensor. Them = TrU is called thescalar-like curvature for B.

Now let C be the conformal curvature tensor definedwrGlodeck{5] and Tannd16]
proved that any non-conformally flat conformal symmetric Riemannian manifold has the
constant scalar curvature. We put Tr(Ric(B)). If VB = 0, then the function is constant
on M. In this section we prove the following

Proposition 5.1. Let M be an n(>4)-dimensional semi-Riemannian manifold and let U be
the symmetric tensor in D°M and let B = B(R, U) be the conformal curvature-like tensor.
If VB = 0, then b{Vu, Vu) = 0.

In order to prove this proposition we verify some lemmas step by step as follows:

Lemma 5.1. Under the situation of Proposition 5.1we have

ZerBirUrj = ZErBerri, (51)
r r

Z 6rBirUrjk = Z erBerrik~ (52)
Proof. SinceBis parallel, it satisfies the second Bianchi identity. Accordinglyl bgorem

2.1, U is the Weyl tensor and it satisfi€3.5). Puttingi = j in (3.5), multiplying ¢;, and
summing up with respect to the indégxve get

Z €rsBrsiiUrs — Z € By Uy + Z & B,y Uy = O,
ns r r

the first term of which vanishes identically & Thus we get
Z 6rBirUrj = ZErBerri-
r r

Accordingly, (5.1) is satisfied. Because &f B = 0, we haveVRic(B) = 0, which means
that B, = 0. SoLemma 5.1is proved. [

Lemma 5.2. Under the situation of Proposition 5.1we have
Z € Biyu, = bu;, (5.3)
r

(VM, Vu)B,-j = buiuj. (5.4)
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Proof. By (2.5) and (4.8)we have

Zer(BlrUjkr BuUii) = 5015 (Z € Birtur€jd i - Z“B"’”’E’ ”)
1
= Zer ir { Ujrk + 20 — )(Mrfj jk = uk€;j8jr)
1
_ zf:eerr Uj”- =+ m(urGj(Sﬁ — uiéj(sj'r)

1
— m (Z ErBirureijk — ZE,Bkruréi&‘j>

1
= m(—BUMk + Bkjul') = 0
where the second equality follows frof®.2). Accordingly, we can obtain
Bijur = Byju;, (5.5)

from which we havé5.3)and
Z erururB,-j = Z erBjrurui
r r

This implies(5.4), which proves our assertion.

Lemma 5.3. Under the situation of Proposition 5.1we have

2b(Vu, Vu) > " - Unjuy = b(Vu, Vu)uiu;. (5.6)

r

Proof. By (4.7), (5.3) and (5.4)we have
2b Z €sUirsupty = b Z €U UPUL;.
r,s r

On the other hand, the left side of the above equation can be reformed as

1
2b Z €rs {Ursi + m(userari - uifrarx)} Uy = sz €rsUrsillrUs
s s

by (2.5). From this together with the above equations, we get

ZbZersUmu,us = bZe,u,urui. (5.7)
S r
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By (5.2) and (5.4)we have
b Z &uiUpjkur = b Z €t jUriruy.
r r

Thus we have

2b Z EsUgllg Z & Upjpuyr = 2b Z €rsit jUrsptrug = b <Z esusu5> U jug,
) r S S

where the last equality is derived frof®.7). This completes the proof. O

Let M’ be the subset o¥f consisting of points at whichb(Vu, Vu)(x) # 0. By (4.2)
if U = S, then Ric) = 0 and hencé = Tr(Ric(B)) = 0. This means thal’ = S on M.
Now let us consider a functiofion M’ defined byb/(Vu, Vu). We denote by;; the
components of the tens®Vu.

Lemma 5.4. Under the situation of Proposition 5.1we have on M’

uij = huiuj, (5.8)
where h is a differentiable function defined on M’.
Proof. BylLemma5.2we haveB;; = fu,u ;. Differentiating covariantly this equation, and
taking account oV B = 0, we get

fruwiuj + fQuiguj 4 uiu i) = 0.

Putting j = k, multiplying ¢, and summing up with respect #Q we get the fact that
> €uiruy is proportional tay;, since the functiogihas no zero points oi’. Transvecting
u;u j to the above equation, we obtain the fact tliats proportional ta. It implies that

ujx = huju on M'. This completes the proof. O

Under such a situation, applyirg; to the Ricci identity and using' B = 0, we have

Z 6r(leirBrj + lejrBir) =0.

r

By Lemma 5.2ve haveB;; = fu,;u; and hence, from the above two equations we get

Z 6r(leiruruj + lejruiur) =0

r

on M'. Thus, we obtainy ,  eqs(Rigirttrttsits + Rigsrttittytts) = 0. Since Ry is skew-
symmetric with respect to indicesands, the second term is zero and hence it turns out to
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be". e Rikirur(Vu, Vu) = 0. So we get ordt’
ZerRrjklur =0. (5.9
p
Proof of Proposition 5.1. In order to proveProposition 5.1it suffices to show that the

subsetM’ is empty. Suppose thaf’ is not empty. Differentiating5.9) covariantly, we get
onM’

Z 6r(Rrjkluri + Rrjkliur) =0
p
By (5.8) and (5.9}1he first term vanishes identically and so it yields that
Z € Ryjriiuy = 0.
p
By (4.9)we have
1
Z er(€;Unndjx — €jUrind ji)ur + U jrpu; — Ujlh“k—m”hej((sjkul — 8jiur) =0,
p
sinceB is parallel. By(5.6)the above equation is reformed as
2
€jupupdjx — €ugupdji + 2U jpuy — 2U jug — muhéj(ulfsjk —updj) =0,
and hence we have

(n — upe;(uidjr — urdjn) + 2(n — 1)U jxnu; — U jipur) = 0.

Putting j = k, multiplying ¢ ; and summing up with respect tin the above equation and
by (5.6), we get

(n = 1) — upu; =0,

which means thatVu, Vu) = 0 onM’, a contradiction. Thus the subgét is empty. O

By Proposition 5.1we are able to generalize a theorem due to Glodg&cknd Tanno
[16] as follows:

Theorem 5.1. Let (M, g) be an n(>4)-dimensional semi-Riemannian manifold. Let U be a
symmetric tensor in DM with u = TrU and let B = B(R, U) be the conformal curvature-
like tensor. If VB = 0, then the scalar product (Vu, Vu) vanishes identically.

Proof. SinceB is parallel,b = Tr(Ric(B)) is constant. First we suppoge# 0. Then by
Proposition 5.we get(Vu, Vu) = 0.
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Next we suppose thdt= 0. We putU(k) = U + kg, wherek is a positive constant.
ThenU(k) is also symmetric tensor iB?M. Now we putB(k) = B(R, U(k)). Then it can
be another conformal curvature-like tensorMmefined in such a way that

B(k)iji = Biji1 — %Eij((silsjk — 8ikd i)
Hence we have

Ric(B(K) = S — U(k) = S — U — ke,
and

b(k) = TH(RIC(B())) = b — nk = —nk % 0.

Also we know that ifB is parallel, so isB(k). Accordingly, we are able to appBroposition
5.1to such a situatiorB(k) = B(R, U(k)), so we haveb(k)(Vu(k), Vu(k)) = 0, where
u(k) = Tr(U(k)). Sinceb(k) is not zero, we havéVu(k), Vu(k)) = 0. By the continuity,
Vu(k) converges t&/u(0) ask tends to +0 and hence we haWweu(0), Vu(0)) = 0. It means
that the scalar produ¢¥vu, Vu) = 0. It completes the proof. O

Then by this theorem we get the following which will be useful in the proof of our Main
Theorem.

Corollary 5.1. Let (M, g) be an n(>4)-dimensional semi-Riemannian manifold. Let U be a
symmetric tensor in D*M with u = TrU and let B = B(R, U) be the conformal curvature-
like tensor. If Vu is not null and if VB = 0, then the scalar-like curvature u is constant.

6. Proof of main theorem

In this section we prove the main theorem stated in the introductionM_ee an
n(>4)-dimensional semi-Riemannian manifold of ind€® < s < n) equipped with semi-
Riemannian metrig and Riemannian connectid@hand letR (resp.S orr) be the Riemannian
curvature tensor (resp. the Ricci tensor or the scalar curvatuné) bet U be the symmetric
tensor inD?>M such thatVu = V(TrU) is not null and let8 = B(R, U) be the conformal
curvature-like tensor. Now we are going to verify our main Theorem by using several steps
given in previous sections.

We assume that is parallel. TherB satisfies the second Bianchi identity and hence by
Theorem 2.1U is the Weyl tensor.

On the other hand, the scalar-like curvature: TrU for B is constant byrheorem 5.1
This means that the symmetric tengdbecomes the Codazzi tensor. Namely it satisfies

Uijk = Uik;. (6.1)
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By (4.6) and the curvature-like properties of the conformal curvature-like teBsme
have

Z €rs BriksUpsj = Z €rsBrijsUpsk = Z €rs BrjisUpsk, (6.2)
s s s

which means thazm €r5ByijsUrsi i1s symmetric in all indices j andk. On the other hand,
by (4.12)we have

Z €rs{(n — 2)BrjksUirs - BrjksUrSi + BriksUjrs + Bristkrs} + Z 6rBerikr =0,
) r

where we have used the scalar-like curvaturis constant. Combining the above two
equations we have

(}’l - 1)2 ersBrjksUirs + Z ErBerikr =0. (63)
rs r

By Lemmas 5.1 and (6).lwe have the following

Lemma 6.1. Let M be an n(>4)-dimensional semi-Riemannian manifold. Let U be the
symmetric tensor U in D*M and let B = B(R, U) be the conformal-like curvature tensor.
Assume that Vu is not null. If B is parallel, then we have

ZErBirUrjk = ZerBerrik = ZEerrUrij- (64)
r r r

Putting j = & in (6.3), multiplying € ; and summing up with respect to the ingewe get

(}’l - 1) Z €rsBrsUips + Z €rsBrsUirs = 0,
rs rs

and hence we get

Z €rsBrsUirg = 0. (6.5)

ns

Next we prove

Lemma 6.2. Under the situation of Lemma 6.1we have

nZGrBirUrjk = bUijka (66)
;

where b = TrRic(B) = Zi €;Bjj and B;j = Zk €k Bikk;.-

Proof. Under the above situation, applyimy; to the Ricci identity, we have

Z Er(leirBrj + lejrBir) =0.

r
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SinceB is parallel, we get

Z €r(Rikirn Brj + Rixjrn Bir) = 0.
.

By (4.1)we have

> el(eUimd i — exUpndir + €U jnir — €1Uxn 1) Bri

r

+ (exUnrnbik — €xUsinbir + €Uk 81y — €Uk 81i) Brj} =0
and hence we have
Z Erl'Berl}’/181'1< - Z GriBerkrh(Sil + Z 6erirU[rh(sjk - Z GerirUkrh(Slj
r r r r
— B Usin + BjjUkin — BixUijn + BiyUxjn = 0. (6.7)

Putting j = k in (6.7), multiplying € ; and summing up with respect to the indgxve get
the conclusion. This completes the proofl]

Now let us denote by1” the subsetin consisting of pointsin M” at whichV R(x) # 0.
Then on such an open subgét we are able to prove the following lemma.

Lemma 6.3. Let M be an n(>4)-dimensional semi-Riemannian manifold with generalized
non-null stress energy tensor. Let U be the symmetric tensor in D°M and let B = B(R, U)
be the conformal curvature-like tensor. If B is parallel, then the generalized non-null stress
energy tensor vanishes, that is

b b
Bij = —8ij = —€idij (6.8)

on M", where b denotes Tr(Ric(B)).
Proof. On the subse¥”, substituting(6.6)into (6.7), we have

bleiUndix — €U jindit + € ;jUind jx — €jUikndy;}/n — B Ulin
+ BjjUiin — BixUjjn + ByiUkjn, = 0.

Transvecting;e, Bjx to the above equation, summing up with respectandk and taking
account of(6.5) and (6.6)we have

(*/n — (Ric(B), Ric(B)))Uyjn = 0,

where(Ric(B), Ric(B)) = Y, €i€x Bk Bi.
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On the other hand, we know that

(Ric(B) — bg/n, Ric(B) — bg/n)

2b b?
=) ei€;BijBij — o > eiejgijBij + 2 > <icisijgij
i,j ij ij

b2
= (Ric(B), Ric(B)) — s

Then from these equations we assert the following
b?/n — (Ric(B), Ric(B)) = 00rvuU = 0.

Then it can be easily seen thaf; = 0 if and only if VR = 0, becausd” = R in (1.3).
Accordingly, under the assumption lbémma 6.3t satisfiesh?/n — (Ric(B), Ric(B)) = 0
onM" = {xeM|VR # 0}. Then the generalized non-null tensor impl&s = be;5;;/n on
M". It completes the proof. [

Now we are going to prove the semi-Riemannian version of Theorems due to Derdzinski
and Rotef3], and Miyazawd7].
Now by (6.3)andLemma 6.2we have

(n = 1)) ereBrjsUins +alip =0, a=b/n. (6.9)

Then(4.11)together with(6.8) and (6.9)mply that

Z 6rBrpklqur = Z 6resp(Brjsl(Spk + stkrapl)Uqu
-

rs
- (I’l - 1) Z EVBrjklUprq - (leUpkq - Bijplq)

=—(n— 1)2 € BrikUpgr — a(€ 81U pkg — €8 jxUpiq)

r

a
n_1 (Z €pUjigdpr — ZepUjkq8P1> :
p p

where we have used the fact that the scalar-like curvatuseconstant inCorollary 5.1
Repeating this equation, we get

_|_

Z BrpiiUjgr = (n —1){(n — 1)2 BrpiiUjgr + a(€p8plUjkq - EpSpkUjlq)
r r

a
T 1(6j5ijplq — €j8j1Upkg)} — al€8jtUpkq — €0k Upig)

a
+ m(ep‘spkUqﬂ — €p0piU jig)
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from which it follows that

Zer rpklU/qr = _n {Ep plUjkq Ep(SpkUjlq}~ (610)
Now we are going to prove the following:

Theorem 6.1. Let M be an n(>4)-dimensional semi-Riemannian manifold with generalized
non-null stress energy tensor. Let U be the symmetric tensor in D°M and let B = B(R, U)
be the conformal curvature-like tensor. Assume that Vu is non-null vector. If B is parallel,
then M is locally symmetric, conformally flat or (VU, VU) = 0.

Proof. By Theorem 5.%he formula(4.10)can be written as follows:

Z e-{endin UprqBrjkl + fhajh Uprq Biyia + €nin Uprq Bijrl + €ndin UprqBijkr}
-

—AUpigBnjii + UpjgBinki + U prgBijni + U pig Bijn }
H{UhnigBpjii + UrjgBipki + UnigBijpi + UnigBijip)}

- { <Z ErUhrqBrjkl> épapi + <Z 6rUhrqBirkl> Gpapj
r r
+ (Z ErUhrqBijr1> 6p5pk + (Z GrUhrqBijkr> 6178171} =0. (6.11)
r r

Now first let us calculate term by term in the left side as follows:

a
ZGrUhrqBrjkl = ZerBrjkthqr = _m{Eijthkq — €8k Unig},
ZerUhrqBirkl = - Zer ByitiUngr = {et ilUnkg — GlgtkUhlq}
-
Zr: € UnrgBijr1 = zr: € BijUngr = _m{elsljUhiq - EI(SliUhjq}7

ZerUhrqBijkr = - Zer rkl]Uhqr = {Gkak]thq 6kakiUhjq}s
-

and

ZGrUprqBrjkl = Zér BrjiiUpgr = — {6] 1Upkg — 6]811<U])lq}
-

Z 6rUprqBirk[ = - Zer rlklqur = {61 lepkq - 6t(skuplq}
-

ZErUprqBijrl = ZGrBrlijqur = _m{elsljupiq - E[S[,’Uqu},
r r
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a
ZErUprqBijkr = - ZGrBrkijqur = " — 1{€k5ijpiq - Ek(skiUqu}»
r r

where we have used the formy&10)
Substituting these formulas in{6.11), we have

—{UpigBnjii + UpjgBinki + UpigBijni + U pig Bijkn}
+ {Unig Bpjii + UrjqBipki + UnkgBijpi + UnigBijip}
a
+ m{(ej‘slehkq — €8k Unig)epdpi — (€i8itUnkg — €iikUnig)€ pd pj
+ (€181jUniq — €181 Unjg)€ pSpk — (€x0kjUniq — €x0xiUnjq)€pdpi}
a
+ m{—(fjrSﬂUpkq — €8x Upig)endin + (€i8i1Upkq — €i8ikUpig)€nd jn
— (€161jU pig — €181:U pjg)endin + (€x0xjUpiq — €xSkiUpjg)endni} = 0, (6.12)

where we have used the formy&10)
Now let us transvedV ,;, to the first part of the left side ¢6.12) Then each term of the
first part can be given respectively as follows:

> €piqUpigUpigBuja = — (VU, VU) Byjut,

Piiq
a
- Z EpiqBihklUpiqu./'q = n_ 16pq{6h8hlUpkq - Eh‘ShkUplq}Uqu,
p.i.q
a
- Z €pigBijniUpiqgUpkg = " _ 1qu{5j5jl Uphg = €j8jnUpighU pig
p.iq

a
- § :epiqBijkhUpiqulq = 16pq{6j5jhUpkq — €8nUphq}Upig.
Piiq

and

a
Z €pigBpjxtUpiqUniq = _méiq{ejfslepik — €8k Uilg}Uhig,
piiq

Z €piqUskjq BipktUpiq = 0,
pi.g

a
Z €pigBijptUipgUnkq = n— 1€qujqUhkq’
Piiq

a
Z €pigBijkpUpigUnig = — P 1€ququhlq~
P.iq
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By transvectingU,,;, to the second part ¢6.12) we have

a
pa— {— (Z €U jiqUnkg — Z Gququhlq>
q

q

+ Z 6iqajl Ukiq Uhiq - Z ququUhjq
i,q q

- Z €ig€kSkjUliqUniq — ZEququhjq ,
i,q q

where we have used, = >, €;U;;; = 0in Corollary 5.1 which means that the scalar-like
curvatureu is constant, in the calculation of the first term of the second part.
Finally, the transvectiod/ ;, to the third part 0{6.12)gives

a
1 {_ <6j3ﬂ Z €pqUphgUpkq — €8 ji Z quUpthplq)

n—
pP.q p.q

— | €dy Z €piqUpiqUpig — Z €pqUpigUpjq | €ndin
piigq Psq

+ | €0 Z €pigUpiqgUpiqg — Z €pqUpkgUpjq | €ndni
piq P.q

Summing up all of these formulas, the transvectigy, to (6.12)implies
a
(VU, VU)Bpju = m(VU, VU)enj(8mdjx — 8idnk), (6.13)

where we have putVU, VU) =3, ; - €piqUpigUpig-

Now let us consider only two cases.

For the first let us consider the open 38ét— M”. Then on such an open set we know
thatM is locally symmetric, that isy R = 0.

Next we consider on the open set’ = {xe M|V R(x) # 0}. Then let us continue our
discussion on such an open 3¢f. When(VU, VU) # 0, we know from(6.13)that

a

n—1

Biji = €i€j(8idjx — 8ibik)-

Then for a curvature-like tens@ = B(R, U) with componentsB;;; we have
(n—2)a—u

mfifj(fsilsjk - 5j15ik)

Riji =

1
+ o (€iSidin — €iSpdik + € Sidjk — €88 )
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- m(6i8jk8il — €88ik + €88k — €88 1),
where we have used the fact that
Bj = agjk = Sjk — Ujk.

Then the conformal curvature teng@with component;; is given by

. (n—2)a—u 2a r iss ey
Ciju = {(n “Dw_2) a2 + Do 2)} €i€j(8iudjx — didj1) = 0.

That is,M is conformally flat. O

Remark 6.1. WhenM is a Riemannian manifold, the resyW U, VU) = 0 mentioned in
Theorem 6.limplies that the symmetric tenseéfis parallel onM, that isVU = 0. Then
the assumption of conformally symmeMB = 0 implies thatV R = 0, that isM is locally
symmetric.

Corollary 6.1. Let M be an n(>4)-dimensional semi-Riemannian manifold. If Vr is not
null, where r is the scalar curvature, and if the conformal curvature tensor C is parallel,
then M is locally symmetric or conformally flat.

Proof. Let M€ be the subset o¥f consisting of points at whichC(x) # 0.
Now first let us consider our proof on such an open &t We put B = B(k) =
B(R, U(k)), whereU(k) = S + kg, k is a constant. So we have

1
Bijii = Riju — m{ei(Ujkail = Ujbix) + €(Uud jx — Uid )}

1
+ mueij(Silsjk - 5ik5jl),

whereU jx = Sjx + ke ;8 i andu = u(k) = TrU(k) = r + nk. We have then
k
Bijii = Ciju — meij(aﬂajk — 3ik8jl)v Bji = Cj —kejbji = —kejdji,

because of Ri&f) = 0. So we see that(k) = —nk # 0. This means that the generalized
stress energy tensor is non-null. Sin€és parallel, so is als®. Moreover,Vu = Vr is
non-null by the assumption. Then Bheorem 6.1M is locally symmetric, conformally
flator (VS, VS) = 0. But onM* the locally symmetry oM implies that the Ricci tensdt
is parallel, that isvS = 0 on M°.

On the complemen — M€ we haveC = 0, that is,M is conformally flat. IfM — M¢
is empty, then it satisfie§ R = 0 nonM. This completes the proof. O



Y.J. Suh et al. / Journal of Geometry and Physics 56 (2006) 875-901 901

Acknowledgments

The present authors wish to express their gratitude to the referee for his valuable com-
ments to our manuscript.

References

[1] A.L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987.
[2] J.P. Bourguignon, Les vates de dimension & signature non nulle dont la courbure est harmonique sont
d’Einstein’, Invent. Math. 63 (1981) 263-286.
[3] A. Derdzinski, W. Roter, On conformally symmetric manifolds with metrics of indices 0 and 1, Tensor, N.S.
31 (1978) 255-259.
[4] A. Derdzinski, C.-L. Shen, Codazzi tensor fields, curvature and Pontrygin forms, Proc. London Math. Soc.
47 (1981) 15-26.
[5] E. Glodeck, Some remarks on conformally symmetric Riemannian spaces, Collog. Math. 23 (1971) 121-123.
[6] S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, Cam-
bridge, London, New York, Melbourne, 1973.
[7] T. Miyazawa, Some theorems on conformally symmetric spaces, Tensor, N.S. 32 (1978) 24-26.
[8] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, London,
1983.
[9] B. O'Neill, The Geometry of Kerr Black HoleA K Peters, Ltd., Wellesley, 1995.
[10] P.J. Ryan, A note on conformally flat spaces with constant scalar curvature, in: Proceedings of the Thirteenth
Bi. Sem. of the Canadian Math. Cong., vol. 2, 1972, pp. 115-124.
[11] Y.J. Suh, Y.S. Choi, H.Y. Yang, On space-like hypersurfaces with constant mean curvature in a Lorentz
manifold, Houston J. Math. 28 (1) (2002) 47-70.
[12] Y.J. Suh, J.-H. Kwon, Y.-S. Pyo, On semi-Riemannian manifolds satisfying the second Bianchi identity, J.
Korean Math. Soc. 40 (2003) 129-167.
[13] Y.J. Suh, J.H. Kwon, Conformally recurrent semi-Riemannian manifolds, Rocky Mountain J. Math. 35 (2005)
285-307.
[14] Y.J. Suh, H.Y. Yang, On conformal-like symmetric Riemannian manifolds, Math. J. Toyama Univ. 24 (2001)
107-133.
[15] U. Simon, Compact conformally Riemannian spaces, Math. Z. 132 (1973) 173-177.
[16] S. Tanno, Curvature tensors and covariant derivative, Annali di Math. Pura ed Appl. 96 (1973) 233-241.
[17] H. Weyl, Reine Infinitesimal geometrie, Math. Z. 26 (1918) 384-411.
[18] H. Weyl, Zur Infinitesimal geometrie: Einordnung der projecktiven und der Auffassuatiigén Nashr,
1921, pp. 99-112.
[19] K. Yano, The Theory of Lie Derivatives and Its Applications, North-Holland, Amsterdam, 1957.
[20] K. Yano, S. Bochner, Curvature and Betti Numbers, Ann. of Math. Studies No. 32, Princeton University
Press, 1953.



	Conformally symmetric semi-Riemannian manifolds*
	Introduction
	Preliminaries
	Weyl tensors
	Conformally symmetric
	Scalar-like curvatures
	Proof of main theorem
	Acknowledgments
	References


