A CHARACTERIZATION OF RULED REAL HYPERSURFACES IN $P_n(C)$

YOUNG JIN SUH*

Introduction

Let $P_n(C)$ denote an n-dimensional complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature $4c$. Real hypersurfaces in $P_n(C)$ have been studied by many differential geometers (See [2], [3], [6], [9] and [11]).

As for a problem concerned with the type number t which is defined by the rank of the second fundamental tensor of real hypersurfaces M in $P_n(C)$, Takagi [9], Yano and Kon [11] showed that there is a point p in M such that $t(p) \leq 2$.

On the other hand, Kimura and Maeda [4] found a non-trivial example of non-homogeneous real hypersurfaces in $P_n(C)$ which is called a ruled real hypersurface. Also it is known that this ruled real hypersurface is not complete and its type number is equal to 2 on the whole M (See Kimura and Maeda [5]). Then it naturally rises to the question that "Is a ruled real hypersurface the only real hypersurface of $P_n(C)$ ($n \geq 3$) satisfying $t = 2$". The purpose of this paper is to answer this problem affirmatively. Thus as a characterization of a ruled real hypersurface we have the following

THEOREM A. Let M be a real hypersurface in $P_n(C)$ ($n \geq 3$) satisfying $t(p) \leq 2$ for any point p in M. Then M is a ruled real hypersurface.

It is known that a ruled real hypersurface in $P_n(C)$ ($n \geq 3$) is not complete. Thus, as an application of Theorem A, we also have the following

Received November 18, 1991.

* This paper was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1991.
THEOREM B. Let \(M \) be a complete real hypersurface in \(P_n(\mathbb{C}) \) \((n \geq 3)\). Then there exists a point \(p \) on \(M \) such that \(t(p) \geq 3 \).

The author would like to express his hearty thanks to Professor R. Takagi for his valuable comments and constant encouragement during the preparation of this paper.

1. Preliminaries

Let \(M \) be a real hypersurface in \(P_n(\mathbb{C}) \) \((n \geq 2)\). Let \(\{e_1, \ldots, e_{2n}\} \) be a local field of orthonormal frames in \(P_n(\mathbb{C}) \) such that, restricted to \(M \), \(e_1, \ldots, e_{2n-1} \) are tangent to \(M \). Denote its dual frame field by \(\theta_1, \ldots, \theta_{2n} \). We use the following convention on the range of indices unless otherwise stated; \(A, B, \ldots, = 1, \ldots, 2n \) and \(i, j, \ldots, = 1, \ldots, 2n-1 \).

The connection forms \(\theta_{AB} \) are defined as the 1-forms satisfying

\[
\begin{align*}
(1.1) \quad d\theta_A &= -\sum \theta_{AB} \wedge \theta_B, \quad \theta_{AB} + \theta_{BA} = 0.
\end{align*}
\]

Restrict the forms under consideration to \(M \). Then, we get \(\theta_{2n} = 0 \) and the forms \(\theta_{2n,i} \) can be written as

\[
(1.2) \quad \phi_i \equiv \theta_{2n,i} = \sum h_{ij} \theta_j, \quad h_{ij} = h_{ji}.
\]

The quadratic form \(\sum h_{ij} \theta_i \otimes \theta_j \) is called the second fundamental form of \(M \) with direction of \(e_{2n} \). The curvature forms \(\Theta_{ij} \) of \(M \) are defined by

\[
(1.3) \quad \begin{align*}
\Theta_{ij} &= d\theta_{ij} + \sum \theta_{ik} \wedge \theta_{kj}, \\
\Theta_{ij} &= \frac{1}{2} \sum R_{ijk\ell} \theta_k \wedge \theta_\ell,
\end{align*}
\]

where \(R_{ijk\ell} \) denotes the component of the Riemannian curvature tensor of \(M \).

We denote by \(J \) the complex structure of \(P_n(\mathbb{C}) \), and put

\[
Je_i = \sum J_{ji} e_j + f_i e_{2n}.
\]

Then the almost contact structure \((J_{ij}, f_k) \) satisfies

\[
(1.4) \quad \begin{align*}
\sum J_{ik} J_{kj} &= f_i f_j - \delta_{ij}, \quad \sum f_j J_{ji} = 0 \\
\sum f_i^2 &= 1, \quad J_{ij} + J_{ji} = 0.
\end{align*}
\]
A characterization of ruled real hypersurfaces in $P_n(\mathbb{C})$

\begin{equation}
 dJ_{ij} = \sum (J_{ik}\theta_{kj} - J_{jk}\theta_{ki}) - f_i\phi_j + f_j\phi_i,
\end{equation}

\begin{equation}
 df_i = \sum (f_j\theta_{ji} - J_{ji}\phi_j).
\end{equation}

The equations of Gauss and Codazzi are given by

\begin{equation}
 \Theta_{ij} = \phi_i \wedge \phi_j + c\theta_i \wedge \theta_j
 + c \sum (J_{ik}J_{jt} + J_{ij}J_{kt})\theta_k \wedge \theta_t,
\end{equation}

\begin{equation}
 d\phi_i = -\sum \phi_j \wedge \theta_{ji}
 + c \sum (f_iJ_{jk} + f_jJ_{ik})\theta_j \wedge \theta_k,
\end{equation}

respectively. Then it follows from (1.3) and (1.6) that the components of the Riemannian curvature tensor are given by

\begin{equation}
 R_{ijkl} = c\{(\delta_{ik}\delta_{jt} - \delta_{it}\delta_{jk}) + J_{ik}J_{jt} - J_{it}J_{jk} + 2J_{ij}J_{kt}\}
 + h_{ik}h_{jt} - h_{it}h_{jk}.
\end{equation}

2. Lemmas

Let M be a real hypersurface in $P_n(\mathbb{C})$. We choose an arbitrary point p in M, and use the following convention on the range of indices; $a, b, \ldots, = 1, \ldots, t(p)$ and $r, s, \ldots, = t(p) + 1, \ldots, 2n - 1$. Then we can take a field $\{e_1, \ldots, e_{2n}\}$ of orthonormal frames on a neighborhood of p in such a way that the 1-forms ϕ_i can be written as

\begin{equation}
 \phi_a = \sum h_{ba}\theta_b, \quad h_{ab} = h_{ba},
 \phi_r = 0,
\end{equation}

at p. We call such a field $\{e_1, \ldots, e_{2n}\}$ to be associated with a point p.

Under this notation we have

Lemma 2.1. Assume that $J_{rs}(p) = 0$ at a point p on M. Then $t(p) \geq n - 1$. Furthermore, the equality holds if and only if $f_a = 0$ and $J_{ab} = 0$ at p.

Proof. By (1.4) we have

\begin{equation}
 \sum b J_{ab}^2 + \sum r J_{ar}^2 + f_a^2 = 1,
\end{equation}

\begin{equation}
 \sum a J_{ra}^2 + f_r^2 = 1,
\end{equation}

\begin{equation}
 \sum (\delta_{ik}\delta_{jt} - \delta_{it}\delta_{jk}) + J_{ik}J_{jt} - J_{it}J_{jk} + 2J_{ij}J_{kt}\}
 + h_{ik}h_{jt} - h_{it}h_{jk}.
\end{equation}
Summing up (2.2) on a, and (2.3) on r, we have

$$\sum_{a,b} J_{ab}^2 + \sum_{a,r} J_{ar}^2 + \sum_{a} f_a^2 = t(p), \tag{2.4}$$

$$\sum_{a,r} J_{ar}^2 + \sum_{r} f_r^2 = 2n - 1 - t(p). \tag{2.5}$$

Substituting (2.5) into (2.4) and making use of $\sum_a f_a^2 + \sum_r f_r^2 = 1$, we have

$$\sum_{a,b} J_{ab}^2 + 2\sum_{a} f_a^2 = 2(t(p) - (n - 1)) \geq 0,$$

and so our assertion follows.

This concludes the proof.

Now we consider a point p where the type number t attains the maximal value, say T. Then there is a neighborhood U of p, on which the function t is constant and the equation (2.1) holds.

Put $\theta_{ar} = \sum A_{arb} \theta_b + \sum B_{ars} \theta_s$. Then, taking the exterior derivative of $\phi_r = 0$ and using (1.7), we have

$$\sum h_{ab} \theta_b \wedge \theta_{ar} - c \sum (f_r J_{ij} + f_i J_{rj}) \theta_i \wedge \theta_j = 0,$$

from which we have

$$\sum h_{ab} B_{brs} - cf_a J_{rs} + cf_s J_{ra} - 2cf_r J_{as} = 0, \tag{2.6}$$

$$f_s J_{rt} - f_t J_{rs} + 2f_r J_{st} = 0. \tag{2.7}$$

It is easy to see that (2.7) is reduced to

$$f_r J_{st} = 0. \tag{2.8}$$

Under such a situation we have

Lemma 2.2. If $J_{rs} = 0$ on U, then $T \geq n$ on U.

Proof. If $T < n$, then by Lemma 2.1 we have $T = n - 1$, and $f_a = 0$ on U. For a suitable choice of a field $\{e_r\}$ of orthonormal frames, if
A characterization of ruled real hypersurfaces in $P_n(C)$

necessary, we may set $f_{2n-1} = 1$ and $f_r = 0$ for $r = n, \ldots, 2n - 2$. Then from (1.5) we have

$$0 = df_r = - \sum J_{ar} \phi_a.$$

But, since rank $J = 2n - 2$, we have $\det(J_{ar}) \neq 0$ ($a = 1, \ldots, n - 1, r = n, \ldots, 2n - 2$). Thus the above equation implies $\phi_a = 0$, which contradicts the fact that $\det(h_{ab}) \neq 0$.

This concludes the proof.

In the remainder of this section we restrict the forms under consideration to the following open set V_T defined by

$$V_T = \{p \in M \mid \text{J}_{rs}(p) \neq 0, \ t(p) = T\},$$

where $\text{J}_{rs}(p) \neq 0$ means "$\text{J}_{rs}(p) \neq 0$ for some $r, s = T + 1, \ldots, 2n - 1".

First from (2.8) we have $f_r = 0$. Thus we may set $f_1 = 1$, and $f_a = 0$ for $a \geq 2$. Hence from (1.4) we have

$$\text{(2.9)} \quad J_{1a} = 0, \quad J_{1r} = 0.$$

Furthermore, $df_r = 0$ gives

$$\text{(2.10)} \quad A_{1ra} = \sum h_{ab} J_{br},$$

$$\text{(2.11)} \quad B_{1rs} = 0.$$

The equation (2.6) amounts to

$$\text{(2.12)} \quad \sum h_{ab} B_{brs} = c f_a J_{rs}.$$

Lemma 2.3. $\det(h_{ab}) = 0$ ($a, b = 2, \ldots, T$) on V_T.

Proof. Here indices a, b run from 2 to T. If $\det(h_{ab}) \neq 0$, then by (2.12) we have $B_{ars} = 0$, which together with (2.11) gives $J_{rs} = 0$. A contradiction to the fact $J_{rs}(p) \neq 0$ on V_T.

This concludes the proof.
3. The proofs of Theorem A and Theorem B

Let M be a real hypersurface of $P_n(C)$ $(n \geq 3)$ with $t(p) \leq 2$ for any point p in M. Let us now construct the following sets which will be used in the later.

$$V = \{ p \in M \mid J_{rs}(p) \neq 0 \}, \ (r, s, \ldots, = t(p) + 1, \ldots, 2n - 1),$$

(3.1) $$M_1 = \{ p \in M \mid t(p) \leq 1 \}, \text{ and}$$

$$M_2 = \{ p \in M \mid t(p) = 2 \}.$$

Then $M_2 = M - M_1$. Moreover we have $\text{Int}(M_1) = \phi$, because Takagi [9] showed that for any point p in M there exists an open neighborhood U of p in M such that $t(p) \geq 2$, where “Int” means the interior of the given set.

From (3.1) we also construct the following sets

(3.2) $$V_1 = V \cap M_1 \text{ and } V_2 = V \cap M_2.$$

Then V_2 coincides with the open set V_T which is defined in §2 for the case $T = 2$. Since we have assumed $T = 2$, let us restrict the forms under consideration to V_2 unless otherwise stated. Then (2.8) gives $f_r = 0$ for $r = 3, \ldots, 2n - 1$, because $J_{rs} \neq 0$. Thus we may set $f_1 = 1$ and $f_a = 0$, $a \geq 2$. From this fact we know that e_1 becomes an almost contact structure vector field.

On the other hand, by Lemma 2.3 we have $h_{22} = 0$ on V_2. From which together with the formula of (2.1) we have

(3.3) $$A = \begin{pmatrix} \alpha & \beta & 0 \\ \beta & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

that is, $Ae_1 = \alpha e_1 + \beta e_2$ and $Ae_2 = \beta e_1$, where A is the second fundamental tensor of M in $P_n(C)$.

Firstly, we now assert that the holomorphic sectional curvature $H = H(e_i)$ is constant on V_2. Here “the holomorphic section” means the section spanned by $\{e_i, Je_i\}$ for $i \neq 1$. Then the holomorphic sectional curvature is given by

$$H(e_i) = R_{ii} *_{ii} * = \sum_{i, \ell} R_{ijkl} J_{ji} J_{li},$$
where e_i^* means $J e_i = \sum_j J_{ji} e_j$, ($i \neq 1$). From which together with (1.4) and (1.8) we have

$$H(e_i) = c\{1 - f_i^2 + 3(1 - f_i^2)^2\} + \sum_{j,t}(h_{ii}h_{tj}J_{ti}J_{ji} - h_{ji}h_{ti}J_{ti}J_{ji}).$$

(3.4)

Since $f_i = 0$ and $h_{ii} = 0$ on V_2 for $i = 2, \ldots, 2n - 1$, (3.4) reduces to

$$H(e_i) = 4c - \sum_{j,t} h_{ji}h_{ti}J_{ti}J_{ji}.$$

Thus for a case where $i \geq 3$, $H(e_i) = 4c$, because $h_{ii} = 0$ for $\ell = 1, \ldots, 2n - 1$. For a case where $i = 2$, (2.9) implies that $H(e_2) = 4c$. Thus we have our assertion.

Next we want to show that the holomorphic sectional curvature H is constant on M. The set given in (3.1) becomes

$$V = V \cap M = V \cap (M_1 \cup M_2) = (V \cap M_1) \cup (V \cap M_2) = V_1 \cup V_2.$$

Since $\text{Int}(V_1) = \emptyset$, from the above formula we have that $H(e_i) = 4c$ on V. Then let us consider an orthogonal complement set of V in M such that $W = M - V$. Thus $J_{rs} = 0$ on $\text{Int}(W)$. From this fact Lemma 2.1 gives $t(p) \geq n - 1 \geq 2$ for any point p in $\text{Int}(W)$. On the other hand, we have assumed $t(p) \leq 2$ for any point p in M. Thus $t(p) = 2$ and $J_{rs}(p) = 0$ on $\text{Int}(W)$. But Lemma 2.2 means that “$J_{rs} = 0$ on $\text{Int}(W)$” implies $T \geq 3$. This makes a contradiction. Consequently, $\text{Int}(W) = \emptyset$. Thus we conclude that the constancy of the holomorphic sectional curvature H can be extended to M globally.

Now let us recall a theorem which is proved by Kimura [4].

Theorem C. Let M be a real hypersurface in $P_n(C)$ ($n \geq 3$) on which H is constant. Then M is one of the following:

(a) an open subset of a geodesic hypersphere ($H > 4c$),
(b) a ruled hypersurface ($H = 4c$). More precisely, let T_0 be the distribution defined by $T_0(x) = \{X \in T_x(M) \mid X \perp \xi\}$ for $x \in M$, then T_0 is integrable, and its integral manifolds are a totally geodesic $P_{n-1}(C)$.
(c) a real hypersurface on which there is a foliation of codimension two such that each leaf of the foliation is contained in some complex hyperplane \(P_{n-1}(\mathbb{C}) \) as a ruled hypersurface \((H = 4c) \).

It is known that for the case (b) of Theorem C the second fundamental tensor \(A \) is given by \(A\xi = a\xi + \nu U, \ A U = \nu \xi \) and \(AX = 0 \) for any \(X \) orthogonal to \(\xi \) and \(U \), where \(\xi \) and \(U \) correspond to \(e_1 \) and \(e_2 \), respectively. Combining this fact with our above assertion we complete the proof of Theorem A. Theorem B immediately follows from Theorem A and the non-completeness of a ruled real hypersurface of the case (b) in Theorem C.

Remark 1. The above Theorem B is the main result of the paper [7]. In that paper we directly gave the proof of Theorem B by solving a differential equation which is derived from the exterior derivative of (2.1).

Remark 2. In the paper [8] the present author and Takagi obtained another new rigidity theorem for isometric immersions \(\iota \) and \(\hat{\iota} \) of a real hypersurface \(M \) into \(P_n(\mathbb{C}) \) under the additional condition such that the type number of \((M, \iota) \) or \((M, \hat{\iota}) \) is not equal to 2 at each point of \(M \). As an application of Theorem B to the homogeneous real hypersurface in \(P_n(\mathbb{C}) \) \((n \geq 3)\) we also obtained a rigidity Theorem without the above additional condition.

References

A characterization of ruled real hypersurfaces in $P_n(C)$

Department of Mathematics
Andong National University
Andong 760–749, Korea