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This research studies the facility layout problem from the perspective of geometric
structures. It reports that a regular hexagonal floor plan has shorter expected
travel distance using rectilinear and Euclidean distance compared to popular floor
plans having equal area in practice, including rectangular, square, and square-
diamond. For this analysis, both probability and simulation models were
developed. Based on this result, this paper proposes two layout applications using
the regular hexagonal floor plan and its compatible material flow patterns. The
analyses show that the newly proposed layout applications perform better than
conventional layout alternatives used for flexible manufacturing systems.

Keywords: facility layout; facility design; probability models; simulation applica-
tions; expected travel distance; building shape

1. Introduction

The material flow structure is an important ingredient in facility layout problems (FLPs)
since different layout alternatives are basically characterised by the shapes of their material
flow patterns. Most of the existing facility layouts are based on a rectangular floor plan
with several conventional material flow patterns such as the spine flow, I-flow, ladder flow,
circular flow, and U-flow (Tompkins et al. 2003, Chae and Peters 2006). One of the
advantages of a rectangular floor plan is its compatibility with machines or products being
placed in the layout since most of them are rectangular. However, for large-scale facilities
with heavy traffic volumes such as warehouses, semiconductor fabrication lines, airports,
and metropolitan areas, the compatibility metric is less important than that of material
handling efficiency.

This research studies the hexagonal floor plan and the corresponding material flow
patterns as alternatives to conventional rectangular floor plans and their material flow
patterns. Newell (1973) found that the best configuration for the facility location
problem is the hexagonal lattice under Euclidean travel, and under the rectilinear model
(L1-metric) is the square-diamond lattice based on the expected travel distance. Johnson
(1992) reported that a building with a square floor plan has the minimum expected
travel distance compared with those having rectangular floor plans under the
assumption of the rectilinear distance between points that are uniformly and
independently distributed.
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The contributions of this research are as follows:

(1) For the facility layout problem, a regular hexagonal floor plan that has equal edges
(hereafter, hexagonal floor plan) dominates the square floor plan based on
a comparison of the expected travel distance under not only the Euclidean distance
but also the rectilinear distance.

(2) This research applies the hexagonal floor plan for proposing two layout
applications and compares their performances with the conventional layout
alternatives. The results show that the hexagonal floor plan and its material flow
patterns are competitive for practical layout applications.

The material flow pattern or material flow structure defines overall skeletons of the
facility layout. It further defines the spatial and directional geometries of the material flow
system. A similar definition, named the ‘physical material flow system,’ by Sinriech (1995)
was used to identify material flow paths in block layouts. Many studies have mentioned
the material flow pattern or layout type as an essential component of FLP (Ho and
Moodie 1998, Solimanpur et al. 2005, Chae and Peters 2006). However, few of them have
directly focused on improving configurations of the material flow patterns. Tompkins
et al. (2003), and Francis and White (1974) discussed conventional flow patterns and their
applications.

In addition to these conventional material flow patterns, several unconventional
patterns have been developed in the literature, more specifically, in studies dealing with
larger facilities such as airport terminals where material flow patterns are important.
Bandara and Wirashinghe (1992), and Robuste (1991) studied airport terminal configura-
tions used by three main types of passengers: arriving, departing, and transferring.
Minimising walking distances between two gate positions, and walking distances between
a gate and the terminal block is the objective of models aimed to optimise airport terminal
designs. The most important geometry determined by this research is the optimal number
of airplane access points for each airport configuration. In the determination, a trade-off
depends on the rate of transfer passengers, and if the rate is zero, the lower bound is
optimal (i.e., many short access points), and vice versa (i.e., a few long access points). For
the manufacturing industry, Tompkins et al. (2003) introduced the structure of Volvo’s
automobile assembly plant in Kalmar, Sweden, that consists of four equal-sized hexagonal
modules. The plant consists of five hexagonal buildings, four plant modules and one office
module. Materials flow along the outside walls of the connected hexagonal buildings, and
the storage areas are located inside the material flow paths in each hexagonal building.
This unconventional material flow structure supports the company’s modular policy in
operations based on production teams. Martin (2004) also showed the potential efficiency
of the hexagonal layout using a modified SLP (systematic layout planning) procedure for
addressing block layout problems.

A number of researchers have used the expected travel distance as a main criterion to
evaluate material handling efficiency. Johnson (1992) developed an approach finding
building shapes that minimise the mean travel time in rectangular buildings. The author
showed that the expected travel distance is one-sixth of the perimeter of the rectangular
floor, and a square floor creates the minimum expected travel distance among other
rectangular floors having equal area. His research identifies an efficiency ratio for given
rectangular floors, and calculates the mean expected travel time for multi-floor travels.
Newell (1973) studied lattice structures for the facility location problem that attempts to
locate n distribution centres to n locations to minimise shipping cost from distribution
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centres to retail stores. He assumed that the locations of the retail stores are uniformly

distributed in a large but finite size of region and distribution centres are located in the

centres of each lattice. His research found that the hexagonal lattice produces the

minimum expected distance under the Euclidean travel model and the square-diamond

lattice provides the minimum expected travelling distance under the rectilinear travel

model among triangular, rectangular, square, hexagonal, and circular lattices.
Bozer and White (1984) used a probability approach to develop expected travel-time

models for AS/RS (automated storage/retrieval systems). The authors classified

movements of a crane into horizontal and vertical directions and identified the

probability distribution for single and dual commands to obtain expected travel times.

Kouvelis and Papanicolaou (1995) used an expected travel time model to establish

bounds for two class-based AS/RS. Koo and Jang (2002) developed an expected travel

time model to determine the appropriate capacity of an AGV (automated guided vehicle)

system.
In Section 2, we develop probability models to obtain the expected travel distances for

non-rectangular floor plans. Section 3 discusses a simulation model that is used to estimate

the expected travel distances of floor plans. Section 4 compares the expected distances of

the several floor plans with equal area, which are obtained by using models in Sections 2

and 3. Section 5 proposes new layout applications using the hexagonal material flow

patterns. Section 6 concludes this paper.

2. Probability models

This section develops probability models to calculate the expected travel distance for non-

rectangular single floor plans. In Johnson’s (1992) research, obtaining the expected travel

distance was not the main issue because the building shapes that he considered were

rectangular; however, his model cannot be used for analysis of non-rectangular floor

plans. We use the same assumption as Johnson’s model, which is that the starting and

finishing points of travels are independent and uniformly distributed in a given floor plan.

In some sense, this assumption sounds unrealistic, but in larger facilities, material flows

more likely follow this assumption. Also, these models focus on the material flow pattern

that deals with the overall structure of the facility layout rather than on the machine layout

problem that addresses detailed locations of machines.
The distance models used in our method are both the rectilinear and

Euclidean distance. Figure 1 shows various floor plans compared in this research.

In addition to the floor plans shown in the figure, two more rectangular floor plans are

included in the analyses. Table 1 presents notations to identify those floor plans in the

second column.

Figure 1. Floor plans with equal area.
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2.1 Travel distance models

If two points are given as continuous random variables in an x-y coordinate system,

p1(x1, y1) and p2(x2, y2), the expected travel distance and the corresponding variance using

standard probability notations are as follows:

E gðx1,x2, y1, y2Þ½ � ¼

Z 1
�1

Z 1
�1

Z 1
�1

Z 1
�1

gðx1, x2, y1, y2Þf ðx1, x2, y1, y2Þdx1dx2dy1dy2 ð1Þ

var gðx1, x2, y1, y2Þ½ � ¼

Z 1
�1

Z 1
�1

Z 1
�1

Z 1
�1

gðx1, x2, y1, y2Þ
2f ðx1,x2, y1, y2Þdx1dx2dy1dy2

ð2Þ

where g(x1, x2, y1, y2) is a function calculating the distance of two points, which is the same

across different floor plans. As mentioned above, we use two different distance models in

the following:

grðx1, x2, y1, y2Þ ¼ jx1 � x2j þ jy1 � y2j ð3Þ

geðx1, x2, y1, y2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ

2
þ ð y1 � y2Þ

2

q
: ð4Þ

Table 1. Floor plans and their units.

Floor plans Unit Area

Unit length comparison
with hexagon

Balance
equation

Unit lengths
for equal area*

Regular hexagon a: edge length 3
ffiffiffi
3
p

2
a2

– a¼ 10.0000

Square s: edge length s2 s ¼

ffiffiffiffiffiffiffiffiffi
3
ffiffiffi
3
p

2

s
a s¼ 16.1186

Diamond (square) s: edge length s2 s ¼

ffiffiffiffiffiffiffiffiffi
3
ffiffiffi
3
p

2

s
a s¼ 16.1186

Rectangular s, t ratio 3 : 4 s, t: width
and length

st s ¼

ffiffiffi
4

3

r
�

ffiffiffiffiffiffiffiffiffi
3
ffiffiffi
3
p

2

s
a s¼ 18.6121

t¼ 13.9591

s, t ratio 1 : 2 s, t: width
and length

st s ¼
ffiffiffi
2
p
�

ffiffiffiffiffiffiffiffiffi
3
ffiffiffi
3
p

2

s
a

s¼ 22.7951

t¼ 11.3976

Octagon b: edge length 2ð1þ
ffiffiffi
2
p
Þb2 b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
ffiffiffi
3
p

4ð1þ
ffiffiffi
2
p
Þ

s
a b¼ 7.3354

Circle r: radius �r2 r ¼

ffiffiffiffiffiffiffiffiffi
3
ffiffiffi
3
p

2�

s
a r¼ 9.0939

Note: *Area is 259.808.
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Formula (3) is a rectilinear distance model while Formula (4) is a Euclidean distance

model. In Formulae (1) and (2), f (x1, x2, y1, y2) is the joint probability distribution
function for two points, which depends on the shapes of the floor plans.

2.2 Probability models for the hexagonal floor plan

In this section, we develop probability models to calculate the expected distance in the
hexagonal floor plan. The probability models use the x-y coordinate system to represent
points and edges of the hexagonal floor plan as shown in Figure 2. In the figure, there is
a regular hexagonal floor plan with the edge length a.

2.2.1 Expected travel distance model using rectilinear distance

With rectilinear distance, the expected travel distance can be divided into the horizontal
and vertical expected travel distances as follows:

E grðx1, x2, y1, y2Þ½ � ¼ E grðx1, x2Þ½ � þ E grð y1, y2Þ½ �: ð5Þ

Furthermore, two points are independent by the assumption above; hence, based on
Figure 2, the expected distance in horizontal and vertical directions becomes:

E grðx1, x2Þ½ � ¼

Z 2a

0

Z 2a

0

jx1 � x2jf
h x1, x2ð Þdx1dx2

¼

Z 2a

0

Z 2a

0

jx1 � x2jf
h x1ð Þf

h x2ð Þdx1dx2 ð6Þ

Figure 2. Regular hexagon in the x-y coordinate system.
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E grð y1, y2Þ½ � ¼

Z ffiffi
3
p

a

0

Z ffiffi
3
p

a

0

jy1 � y2jf
v y1, y1ð Þdy1dy2

¼

Z ffiffi
3
p

a

0

Z ffiffi
3
p

a

0

jy1 � y2jf
v y1ð Þf

v y2ð Þdy1dy2: ð7Þ

To obtain the horizontal marginal probability distribution function, f h(x), for

random points, x1 and x2 in Formulae (6) and (7), Figure 3(a1) divides the hexagonal

floor plan with its edge length a into three sections based on the horizontal

marginal probability distribution function in Figure 3(a2). We have the following

probability distribution function for starting and finishing points (x below) of

Figure 3. Marginal probability distribution functions of horizontal and vertical points for different
sections.
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horizontal travel distances:

f hðxÞ ¼ k � hðxÞ, hðxÞ ¼

2
ffiffiffi
3
p

x, 0 � x �
a

2ffiffiffi
3
p

,
a

2
� x �

3a

2

�2
ffiffiffi
3
p

xþ 4
ffiffiffi
3
p

a,
3a

2
� x � 2a

0, otherwise

8>>>>>>><
>>>>>>>:

: ð8Þ

In Formula (8), k is a proportional constant making the integration of all sections of

h(x) equal to one, and k is obtained as follows:

k �

Z 2a

0

hðxÞdx ¼ k �

Z a
2

0

2
ffiffiffi
3
p

xdxþ

Z 3a
2

a
2

ffiffiffi
3
p

dxþ

Z 2a

3a
2

ð�2
ffiffiffi
3
p

xþ 4
ffiffiffi
3
p

aÞdx

( )
¼ 1

k �
3
ffiffiffi
3
p

2
¼ 1

k ¼
2
ffiffiffi
3
p

9
:

Therefore:

f hðxÞ ¼
2
ffiffiffi
3
p

9
� hðxÞ: ð9Þ

Since there are three sections as shown in Figure 3(a1), we have nine travel cases of intra

and inter section travels depending on where x1 and x2 are located, as listed in the first three

columns of Table 2. For the travel cases, there are symmetries for the expected travel

distances as we can observe in Figure 3(a1). For example, the expected travel distance from

section A to section A (AA) is the same as that from C to C (CC), and the case AB is the

same as the case BC. Hence, there are four types of travel cases in the fourth column of

Table 2. The following are formulae for calculating the expected distance for different

travel types, from T1 to T4 in the fourth column. We used MATLAB for completing

integration processes, and computation results are presented in the last column of Table 2.

Table 2. Expected distances of horizontal travel cases for a hexagonal floor plan.

Travel case

Sections

Type Expected distancex1 x2

1 A A T1 0.0037a
2 A B T2 0.0741a
3 A C T3 0.0370a
4 B A T2 0.0741a
5 B B T4 0.1481a
6 B C T2 0.0741a
7 C A T3 0.0370a
8 C B T2 0.0741a
9 C C T1 0.0037a

Sum 0.5259a

International Journal of Production Research 3413
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T 1:

E grðx1, x2Þ½ � ¼

Z a
2

0

Z a
2

0

jx1 � x2jf
hðx1Þ � f

hðx2Þdx1dx2

¼

Z a
2

0

Z a
2

0

jx1 � x2j �
2
ffiffiffi
3
p

9
� 2

ffiffiffi
3
p

x1

� �
�

2
ffiffiffi
3
p

9
� 2

ffiffiffi
3
p

x2

� �
� dx1dx2

¼
16

9

Z a
2

0

Z a
2

0

jx1 � x2j � x1 � x2dx1dx2

¼
a

270
ð10Þ

T 2:

E grðx1, x2Þ½ � ¼

Z a
2

0

Z 3a
2

a
2

jx1 � x2jf
hðx1Þ � f

hðx2Þdx1dx2

¼

Z a
2

0

Z 3a
2

a
2

jx1 � x2j �
2
ffiffiffi
3
p

9
� 2

ffiffiffi
3
p

x1

� �
�

2
ffiffiffi
3
p

9
�
ffiffiffi
3
p

� �
� dx1dx2

¼
8

9

Z a
2

0

Z 3a
2

a
2

jx1 � x2j � x1dx1dx2

¼
2a

27
ð11Þ

T3:

E grðx1, x2Þ½ � ¼

Z a
2

0

Z 2a

3a
2

jx1 � x2jf
hðx1Þ � f

hðx2Þdx1dx2

¼

Z a
2

0

Z 2a

3a
2

jx1 � x2j �
2
ffiffiffi
3
p

9
� 2

ffiffiffi
3
p

x1

� �
�

2
ffiffiffi
3
p

9
� �2

ffiffiffi
3
p

x2 þ 4
ffiffiffi
3
p

a
� �� �

� dx1dx2

¼
16

27

Z a
2

0

Z 3a
2

a
2

jx1 � x2j � �
ffiffiffi
3
p

x1x2 þ 6ax2

� �
dx1dx2

¼
a

27
ð12Þ

T4:

E grðx1, x2Þ½ � ¼

Z 3a
2

a
2

Z 3a
2

a
2

jx1 � x2jf
hðx1Þ � f

hðx2Þdx1dx2

¼

Z 3a
2

a
2

Z 3a
2

a
2

jx1 � x2j �
2
ffiffiffi
3
p

9
�
ffiffiffi
3
p

� �
�

2
ffiffiffi
3
p

9
�
ffiffiffi
3
p

� �
� dx1dx2

¼
4

9

Z 3a
2

a
2

Z 3a
2

a
2

jx1 � x2jdx1dx2

¼
4a

27
: ð13Þ
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Using Formulae (10) to (13), the horizontal expected travel distances for each case are

presented in the last column of Table 2. As shown in the last row of Table 2, the horizontal

expected travel distance of the hexagon is:

E grðx1, x2Þ½ � ¼

Z 2a

0

Z 2a

0

jx1 � x2j � f
h x1ð Þf

h x2ð Þdx1dx2

¼
71a

135
¼ 0:5259 � a: ð14Þ

The same method is used to calculate the vertical expected distance. Consider

Figure 3(b1). We have two sections with the following probability distribution function for

starting and finishing points in the vertical direction based on Figure 3(b2):

f vð yÞ ¼ k � sð yÞ, sð yÞ ¼

2
ffiffiffi
3
p

3
yþ a, 0 � y �

ffiffiffi
3
p

a
2

�
2
ffiffiffi
3
p

3
yþ 3a,

ffiffiffi
3
p

a

2
� y �

ffiffiffi
3
p

a

0, otherwise

8>>>>><
>>>>>:

: ð15Þ

Similarly as Formula (9):

f vð yÞ ¼
2
ffiffiffi
3
p

9
� sð yÞ: ð16Þ

There are four different travel cases as shown in the first three columns of Table 3,

which have different probability distribution functions. They are classified into two travel

types as shown in the fourth column of Table 3. For each type, we obtain the following

expected travel distance models:

T1:

E grð y1, y2Þ½ � ¼

Z ffiffi
3
p

a
2

0

Z ffiffi
3
p

a
2

0

jy1 � y2jf
vð y1Þ � f

vð y2Þdy1dy2

¼

Z ffiffi
3
p

a
2

0

Z ffiffi
3
p

a
2

0

jy1 � y2j �
2
ffiffiffi
3
p

9

2
ffiffiffi
3
p

3
y1 þ a

� �
�
2
ffiffiffi
3
p

9

2
ffiffiffi
3
p

3
y2 þ a

� �
� dy1dy2

¼
16

27

Z ffiffi
3
p

a
2

0

Z ffiffi
3
p

a
2

0

jy1 � y2j �

ffiffiffi
3
p

3
y1 þ

a

2

� �
�

ffiffiffi
3
p

3
y2 þ

a

2

� �
� dy1dy2

¼
11

ffiffiffi
3
p

a

270
ð17Þ

Table 3. Expected distances of vertical travel cases for a hexagonal floor plan.

Travel case

Sections

Type Expected distancex1 x2

1 D D T1 0.0706a
2 D E T 2 0.1925a
3 E D T 2 0.1925a
4 E E T1 0.0706a

Sum 0.5260a
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T2:

E grð y1, y2Þ½ � ¼

Z ffiffi
3
p

a
2

0

Z ffiffi
3
p

affiffi
3
p

a
2

jy1 � y2jf
vð y1Þ � f

vð y2Þdy1dy2

¼

Z ffiffi
3
p

a
2

0

Z ffiffi
3
p

affiffi
3
p

a
2

jy1 � y2j �
2
ffiffiffi
3
p

9

2
ffiffiffi
3
p

3
y1 þ a

� �
�
2
ffiffiffi
3
p

9
�
2
ffiffiffi
3
p

3
y2 þ 3a

� �
� dy1dy2

¼
16

27

Z ffiffi
3
p

a
2

0

Z ffiffi
3
p

affiffi
3
p

a
2

jy1 � y2j �

ffiffiffi
3
p

3
y1 þ

a

2

� �
� �

ffiffiffi
3
p

3
y2 þ

3a

2

� �
� dy1dy2

¼

ffiffiffi
3
p

a

9
: ð18Þ

Using Formulae (17) and (18), the vertical expected travel distances for each case are

presented in the last column of Table 3. In the last row of the table, we have the vertical

expected travel distance in the hexagon as follows:

E grð y1, y2Þ½ � ¼

Z ffiffi
3
p

a

0

Z ffiffi
3
p

a

0

jy1 � y2j � f
v y1ð Þf

v y2ð Þdy1dy2

¼
41

ffiffiffi
3
p

a

135
¼ 0:5260 � a: ð19Þ

From Formulae (14) and (19), the expected travel distance in a hexagon with the edge

length a is 0.5259 � aþ 0.5260 � a¼ 1.0519 � a.

2.2.2 Variance of the expected distance in the rectilinear model

For obtaining the variance of the expected distance in the rectilinear model, we cannot

separate horizontal and vertical distances as we used in Formula (5) because the square of

Formula (3) creates the interaction between x and y variables; hence, a joint probability

density function should be identified. Although the joint probability density function is

easily expressed, it is very difficult to obtain an exact number from the model due to

the complicated integration process. Alternatively, we use a simulation approach in

Section 3 to obtain the variance of the expected travel distance in the hexagon. The

probability of a random point in a floor plan can be expressed as the reciprocal of its total

area (Hoel et al. 1971); therefore, the following is the joint probability distribution function

of two random points in the hexagon based on Figure 2 and its area formula in Table 1:

f ðx1, x2, y1, y2Þ ¼

2

3
ffiffiffi
3
p

a2
�

2

3
ffiffiffi
3
p

a2
� k ¼

4k

27a4
, x1, x2, y1, y2 2 Q

0, elsewhere

,

8<
:

where:

Q ¼

(
ðxi, yjÞ j xi � 0, xi � 2a, yi � 0, yi �

ffiffiffi
3
p

a, yi � �
ffiffiffi
3
p

xi þ

ffiffiffi
3
p

a

2
, yi �

ffiffiffi
3
p

xi

þ

ffiffiffi
3
p

a

2
, yi � �

ffiffiffi
3
p

xi þ
5
ffiffiffi
3
p

a

2
, yi �

ffiffiffi
3
p

xi þ
3
ffiffiffi
3
p

a

2

)
, ð20Þ

for i¼ 1 and i¼ 2.
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The variance model in the rectilinear distance can be written using Formulae (2), (3),

and (20).

2.2.3 Euclidean distance model

For the Euclidean distance model, the distance between two points is obtained by

considering their horizontal and vertical positions at the same time. Therefore, we cannot

use Formula (5). Consequently, Formulae (4) and (20) are applied to express the expected

travel distance and its variance in Euclidean distance. A similar argument as the variance

model of the rectilinear distance is applied to the expected travel distance and its variance

models in Euclidean distance. Due to the computational complexity, a simulation

approach can be alternatively used to obtain the expected travel distance and its variance

of the hexagon in the Euclidean model.

2.3 Other floor plans

Similar discussions as the hexagonal floor plan above apply to the other floor plans in

Figure 1. Figure 4 provides the probability distribution functions for the horizontal and

vertical travel directions for the diamond, octagonal, and circular floor plans to calculate

expected travel distances in the rectilinear model. For those floor plans in Figure 4, the

horizontal and vertical expected travel distances are equal because of symmetry. Also, the

expected distance of a square and rectangular floor plan is simply 1/6 th of its perimeter in

the rectilinear distance (Johnson 1992). Another interesting discussion is that the expected

Figure 4. Horizontal and vertical marginal probability distribution functions for (a) diamond,
(b) octagon, and (c) circle.
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distance model of the diamond in Figure 1 is different from that of the square in rectilinear
distance since they have different travel patterns and probabilities.

3. Simulation model

The purpose of developing a simulation model is to estimate the expected distance for
some of the probability models that are hard to obtain an exact result due to
computational complexity. For instance, we can obtain an exact number of the expected
travel distance in the rectilinear distance for the hexagonal floor plan using the probability
model developed in the previous section; however, that of Euclidean is very difficult. Also,
the simulation model could be used for verifying the expected distances calculated by the
probability models in the previous section.

The simulation model creates a large number of point pairs in the floor plan and
computes an average and variance by using the created pairs. The acceptance-rejection
method was used to create valid random variates (Law and Kelton 2000) of x and y
coordinates representing a point. The flow chart of the simulation procedure is shown in
Figure 5. First, in F1 of the flow chart, we create two random variates using the uniform
distribution for a point in an x-y coordinate system which is plotted in the rectangular
plane (for example, see the rectangular plan in Figure 2). If the point is in the floor plan
(e.g., hexagonal floor plan), then we keep the point and create another point in the same
way (F2 in Figure 5). If the point is not in the floor plan, then we discard it.

The boundaries of random variates in the rectangular plan that are created by
a uniform distribution depend on the floor plan. For example, the boundaries of the
hexagonal floor plan are identified by four points {(0, 0), ð0,

ffiffiffi
3
p

aÞ, ð2a,
ffiffiffi
3
p

aÞ, (2a, 0)} in the
x-y coordinate system as shown in Figure 2. The boundaries of the random variates are
from 0 to 2a for x-axis and from 0 to

ffiffiffi
3
p

a for y-axis. The random variates created by the
uniform distribution with the boundaries are tested by acceptance conditions for each
floor plan. For example, four inequality conditions in Figure 2 are used to determine the
rejection or acceptance of a point created by the x and y boundaries. Table 4 defines x-y
boundaries of random variates and acceptance conditions for each floor plan. Notations in
Table 4 follow those in Table 1. If two valid points are obtained, we calculate their distance
based on Formulae (3) and (4) as shown in F3 of Figure 5. A simulation iterates until
sufficiently many pairs of valid points (F4 in Figure 5) are obtained. Simulations are
repeated sufficiently many times to obtain an unbiased estimated value (F5 in Figure 5).
Since the computation of the distance by using Formulae (3) and (4) is simple enough, we
used very large M and N (i.e., one million for each) in the next section.

4. Expected travel time comparison

The expected travel distances of different floor plans obtained by the probability models or
simulation models are compared in this section. In fact, we obtained almost the same
results from the probability models to the simulation models for rectangle, square,
diamond, hexagon, and octagon in rectilinear distance. For the rest, we used the
simulation model only. In Table 1, we have a hexagon with edge length of 10, the area of
which is 259.808 in the first row. The unit lengths making all other floor plans having the
same areas are identified in the last column in the table. For example, the radius of a circle
having an area of 259.808 is r¼ 9.0939 as shown in the last row and column of the table.
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The balance equation for which the unit length of each floor plan has the same area with
the hexagon is in the second column of the table.

Table 5 compares the expected travel distances, their variances, and maximum travel
distances of the floor plans in the rectilinear and Euclidean travel models. Both the
expected distances of the hexagonal floor plan (i.e., rectilinear and Euclidean) are less than
those of rectangular, square, and diamond plans, and slightly larger than those of the
octagonal and circular plans. Based on columns 3 and 7, both the expected travel distances
of the hexagon only are 0.3% and 0.4% larger than those of the circle creating the
minimum distances; however, they are 1.1% and 1.7% less than the diamond that is
ranked right next to the hexagon. The variance and maximum criteria show similar
performance results as the comparison of the expected travel distance. Compared to the

Mm ≥

Create two random variates xi and yi

Do xi and yi satisfy the boundary  
conditions in Table 3 for the floor plan? 

),,,( 2121 yyxxgdmn ←

2≥i

i i+1

Nn ≥

No

Yes

Yes

Yes

i  0, m m+1

End

No

No

F1

F2

F3

F4

Set m = 0, i = 0 

Yes

No

Start n = 0 

F5

n n+1

Calculate [ ]),,,( 2121 yyxxgE  and 

[ ]1 2 1 2var ( , , , )g x x y y  using dmn

Figure 5. Flow chart of the simulation procedure.
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octagonal and circular floor plans, the hexagonal floor plan is more scalable to expand and
more compatible for designing material flow patterns. Note that the circular and octagonal
floor plans do not pack well for multiple patterns whereas the rectangle, square, diamond,
and hexagon pack without empty spaces between them. More discussion on the qualitative
analysis of the hexagonal layout will be provided in Section 5.

It is worthwhile to compare these results with those of Newell (1973) that were
reviewed in Section 2. Since his model focused on the facility location problem, its
main performance measures were expected travel distances from the centres of floor

Table 4. Boundaries for creating random variates for floor plans.

Floor plans x-boundaryy-boundary Satisfying conditions

Regular hexagon 2a ffiffiffi
3
p

a y �
ffiffiffi
3
p

xþ

ffiffiffi
3
p

2
a, y � �

ffiffiffi
3
p

xþ
5
ffiffiffi
3
p

2
a

y � �
ffiffiffi
3
p

xþ

ffiffiffi
3
p

2
a, y �

ffiffiffi
3
p

x�
3
ffiffiffi
3
p

2
a

Square s s –

Diamond (square)
ffiffiffi
2
p

s
ffiffiffi
2
p

s
y � xþ

ffiffiffi
2
p

2
s, y � �xþ

3
ffiffiffi
2
p

2
s

y � �xþ

ffiffiffi
2
p

2
s, y � x�

ffiffiffi
2
p

2
s

Rectangular s, t ratio 3 : 4 s t –
s, t ratio 1 : 2 s t –

Octagon
bþ

ffiffiffi
2
p

b bþ
ffiffiffi
2
p

b y � �xþ 2bþ
3bffiffiffi
2
p , y � xþ bþ

bffiffiffi
2
p

y � �xþ
bffiffiffi
2
p , y � x� b�

bffiffiffi
2
p

Circle r r x2þ y2� r2

Table 5. Expected travel distances and variances for different floor plans.

Floor plans

Rectilinear distance Euclidean distance

ETD1 ETD (%)2 Var Max ETD ETD (%) Var Max

Rectangular12 11.40 1.085 36.12 34.19 9.17 1.110 24.15 25.49
Rectangular34 10.85 1.032 30.07 32.57 8.53 1.033 17.35 23.27
Square 10.75 1.023 28.78 32.24 8.41 1.018 15.92 22.80
Diamond 10.63 1.011 25.39 32.24 8.40 1.017 15.96 22.80
Hexagon 10.51 1.000 25.62 27.38 8.26 1.000 15.03 20.05
Octagon 10.50 0.999 25.50 27.11 8.24 0.998 14.94 19.17
Circle 10.48 0.997 25.45 25.72 8.23 0.996 14.90 18.19

Note: 1ETD: expected travel distance;
2ETD (%): ETD/(ETD of hexaogn).
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plans to the points that are randomly distributed in the floor plans. One noticeable

difference found by this research compared to that of Newell (1973) is that the

hexagonal floor plan performs better than the diamond under the rectilinear distance

for the facility layout problem, while Newell (1973) reported that the diamond lattice

produces the minimum expected travel distance under the same metric for the facility

location problem.
Figure 6 more clearly shows the differences of the expected distances as ranked in

Table 5. Starting with the expected travel distance of rectangular12, the expected

distance decreases based on the order of the floor shapes in the x-axis. It is also

noticeable that the slopes of the expected travel distances for the rectilinear and

Euclidean models become smaller from the lines between the hexagon and octagon in the

figure. Another interesting observation from Table 5 and Figure 6 is that the square-

diamond outperforms the square in the rectilinear distance. This implies that designing

a central aisle using a diagonal direction in a square could produce a better alternative

compared to the conventional material flow design that bisects a square floor plan in the

vertical direction.

5. Hexagonal layout applications

In this section, two new layout alternatives using the hexagonal floor plan are proposed

and compared with those using the conventional rectangular floor plan. The two layout

alternatives proposed are named ‘hexagonal layout’ and ‘hexagonal spine layout’.

5.1 Hexagonal layout

The proposed hexagonal layout uses a hexagonal building structure (Figure 7(a)) and the

material flow pattern in the building is also hexagonal, machines of which are placed along
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Figure 6. Expected travel distances for different floor plans.
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both sides of the flow paths parallel to outer walls. More than one hexagonal flow path
can be nested in the outermost hexagonal flow path, and they are connected through six
shortcuts from one point to the opposite point in the hexagon as shown in Figure 7(a).
There is one nested hexagonal flow path in the figure.

The hexagonal layout is compared with two types of the unified layout that are
conventional spine layouts in the rectangular building as shown in Figure 7(b) and (c).
In the unified layout, there is a flow path connecting cells placed along the central spine.
In addition, the flow path in outer perimeter connects the cells to reduce material travelling
time. Machines are placed along both sides of each aisle in a cell. In Figure 7(c), machines
are also placed along the outer perimeter while in Figure 3(b), all machines are placed in
the cells. The unified type 2 in Figure 7(b) is popularly used in the semiconductor industry
(Kong 2007).

The three machine layouts in the figure have the same number of machines
(36 machines) and total areas as well as the same layout principles such as clearance
between machines and aisle widths. They use AGV systems operated by the double track

Figure 7. Unified spine and hexagonal layouts operated by AGV systems.
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unidirectional flow path with shortcuts between two parallel tracks. This research

conducted simulation experiments using a commercial package (AIM 8.0) to compare the

performance of the three layout alternatives.

5.1.1 Simulation input

Simulation experiments used different levels of arrival rates and corresponding vehicle

numbers to create simulation cases and a total of 14 simulation cases was created.

Other simulation assumptions are summarised in Table 6. For each case, the source

and destination pairs of transfer requests were created randomly and their arrivals

follow the exponential distribution. Hence, the processing times on machines and

process sequences were not considered. Each simulation case was repeated 10 times and

the duration of each replication was one month, which was long enough that almost no

differences were observed in the results across replications. Details on the AGV system

are also presented in the table. We also tested using a forklift system without

considering vehicle blockings that were common in the AGV system and obtained

similar results.

5.1.2 Simulation output analysis

Figure 8 shows simulation results indicating better performance of the hexagonal layout

compared to the two unified layout alternatives. Uni-type 2 in Figure 7(c) produced better

performance compared to the uni-type 1 in Figure 7(b). Uni-type 2 created similar

performance as the hexagonal layout when the arrival rate was low; however, the

hexagonal layout more clearly produced better performance as the arrival rates increased

to a medium and high level. The differences of the transportation times among the three

layout types became wider as the arrival rates increased. The differences under the high

arrival rate level were 19% (hexagon versus uni-type 1) and 4% (hexagon versus uni-type

2) in averages with that of the hexagon and those of two unified layouts, respectively.

In the comparison of vehicle utilisations, the shorter vehicle loaded travel time to unload,

shorter empty travelling time to pick up, and less vehicle blocking during travelling

contributed the better performance of the hexagonal layout.

Table 6. Simulation input data and assumptions.

Item Input

Transfer request distribution on starting and finishing machines Random flow
Transfer request distribution on arrival time Exponential distribution
Simulation periods 1 month
Number of replications/case 10
AGV system Speed 40m/sec

Load/unload time 30 sec
Empty vehicle selection policy Closest idle
Order selection policy First arrived first service
Idle parking policy Idle stop
Battery charge None (load/unload, idle

parking charge)
AGV vehicle clearance 0.5m
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5.1.3 Qualitative analysis

In addition to the simulation experiments showing the good performance of the hexagonal

layout and the analysis provided in Sections 3 and 4, we discuss benefits of the hexagonal
layout based on qualitative analysis in the following:

(1) The hexagonal material flow pattern streamlines material handling between

machines.
(2) It also provides more material routing alternatives.
(3) The core area can be useful for material handling as well as operational

management.
(4) It has a scalable structure and provides a better access environment from the

outside.

In Figure 7(a), the outer hexagonal flow path can be divided into six edges and each edge

can be seen as a cell in the spine flow pattern. However, the six cells form a cycle, which
reduces the material handling distances and streamlines material flows. Regarding point

(2), it provides more alternative routes than conventional spine flow patterns without
significantly increasing distances because of the six shortcuts passing the centre of the

hexagon as shown in Figure 7(a). This flexibility in path routings is important for empty

vehicle travels as well as loaded vehicle travels, which reduces travel times to pick up loads.
As pointed out in (3), the core area of the hexagonal flow pattern can be used for many

different purposes, such as a storage space, control room, and connection point, since it

can be easily accessed from any points in the layout. The hexagonal floor plan is scalable
since several hexagonal facilities can be connected in a similar way as the honeycomb.

Because six sides of the pattern face with the outside or other facilities, the structure
provides a better access environment than the rectangular pattern as illustrated in

Figure 9.

5.2 Hexagonal spine layout

The second layout design for which we propose utilising the hexagonal floor plan is shown

in Figure 10(a), which is named as the ‘hexagonal spine layout’. It uses a conventional
spine material flow pattern in the hexagonal building, which is compared with the same
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Figure 8. Average transportation time with different arrival time rates.
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flow pattern in the rectangular building in Figure 10(b). The latter is named as the
‘rectangular spine layout’ and is one of the most popular material flow patterns used for
modern flexible manufacturing systems. The motivation behind this new layout proposal is
that, as we have seen in the previous sections, the hexagonal floor plan creates a shorter

Figure 9. Scalability of the hexagonal floor plan.

Figure 10. Spine layouts in hexagonal and rectangular floor plans.
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expected travel distance in rectilinear distance. Most of the material flows in a spine layout

are rectilinear travels; hence, we expect that the hexagonal floor plan is better than the
rectangular floor plan for the spine material flow pattern.

To compare the two layout alternatives in Figure 10, we evaluated the total loaded

travel distances and variances of travel distance (Koo and Jang 2002) in the two

layout alternatives. The distances of all pair shortest paths between two machines in the
two layouts are obtained by using Floyd’s algorithm. As seen in Table 7, the total travel

distance (sum of travel distances between all pairs) of the spine material flow in the
hexagonal spine layout is about 3.5% less than that of the rectangular spine layout. The

reduction of the variance (variance of distances between all pairs) is more noticeable in

percentage as shown in the last column of the table. For facilities using AMHS
(automated material handling system), reducing material flow distance not only

contributes to a reduced initial investment but also increases the transfer capacity

during a peak load.

5.3 Discussions

The main concern of the two proposed material flow patterns that we have presented is

space efficiency because most existing machines are rectangular shaped that inevitably
create empty spaces in a hexagonal building. However, this problem can be resolved by

placing auxiliary machines, storage spaces, and control panels into the empty spaces. Also,
in some facilities, the shapes of machines can be customised based on the flow paths and

available space shapes.
Another concern of the hexagonal material flow shown in Figure 7(a) is the expected

congestion in the centre of the pattern because six shortcuts meet at one point. Based on
the simulation experiments, this is not a major concern since there is no load/unload

station at the central point. Negligible delays in the segments of the central area were

observed. Rather, the delays were more frequently observed in the outer path because of
loading/unloading jobs on the path, the problem of which can be addressed by placing

spurs for bypassing vehicles.

6. Conclusion

This research has studied one of the fundamental questions of the facility layout problem

and reported that a regular hexagonal floor plan creates the shorter expected travel
distance compared to rectangular, square, and square-diamond for not only the Euclidean

distance model but also the rectilinear model. The comparison of maximum travel distance

and variance of the travel distances showed a similar performance of the hexagonal layout.
In applications of the hexagonal floor plan for more practical layout designs, this paper

Table 7. Comparison of the spine layouts in hexagonal and rectangular floor plans.

Items Rectangular Hexagonal Reduction %

Total flow distance 60,452 58,401 3.4%
Variance of flow distances 985 492 50.1%
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has proposed a hexagonal layout and hexagonal spine layout as alternatives to the unified

layout and rectangular spine layout, respectively. Analyses of the two newly proposed

layout designs showed that they perform better than the conventional layout alternatives.
In future research, a layout alternative utilising the hexagonal floor plan and material

flow patterns would be proposed to improve layout performance for a more specific layout

application. As discussed in the introduction, the hexagonal layout might be appropriate

for layout applications of which the material handling criterion is emphasised. The

semiconductor facility layout is potentially a good candidate of this application since the

industry has used a conventional rectangular floor plan and spine type layout for many

years (Chung and Jang 2007). Especially, the layout design is important for the industry

due to very complicated material handling in wafer fabrication facilities. In future

applications of the hexagonal layout, one question expected by practitioners in industry is

the space compatibility and efficiency as discussed in Section 5.3. Future studies should

address this issue by analysing pros and cons of the hexagonal layout in measurements of

the engineering economics related to the focused layout applications.
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