Note on Robust Critical Graphs with Large Odd Girth

E. Năstasea,*, V. Rödlb, M. Siggersc

aXavier University, Cincinnati, OH, USA
bEmory University, Atlanta, GA, USA
cSimon Fraser University, Vancouver, Canada

Abstract

A graph G is $(k+1)$-critical if it is not k-colourable but $G-e$ is k-colourable for any edge $e \in E(G)$. In this paper we show that for any integers $k \geq 3$ and $\ell \geq 5$ there exists a constant $c = c(k, \ell) > 0$, such that for all \tilde{n}, there exists a $(k+1)$-critical graph G on n vertices with $n > \tilde{n}$ and odd girth at least ℓ, which can be made $(k-1)$-colourable only by the omission of at least cn^2 edges.

Key words: Graph, colour critical, odd girth.

1 Introduction

Let $G = (V(G), E(G))$ be a graph. A k-colouring χ of G is a function $\chi : V(G) \rightarrow [k]$ such that $\chi(u) \neq \chi(v)$ whenever $\{u, v\}$ is an edge of G. The graph G is called k-colourable if there exists a k-colouring of G, and is called k-chromatic if k is the smallest integer such that G has a k-colouring. G is called $(k+1)$-critical if it is not k-colourable, but $G-e$ is k-colourable for any edge e of G. The girth of G, denoted by $g(G)$, is the length of the shortest cycle in G.

In 1970, Toft [9] extended a result of Dirac [2] to show that for $k \geq 3$, there exists some constant c_k such that for any n, there exists a $(k+1)$-critical graph on n vertices with at least c_kn^2 edges. These graphs constructed by Toft and

* Corresponding Author.

\textit{Email addresses: nastasee@xavier.edu} (E. Năstase), rodl@mathcs.emory.edu (V. Rödl), mhsiggers@gmail.com (M. Siggers).
Dirac had large bipartite subgraphs and contained small odd cycles. Erdős [4] suggested that this may always be the case.

For \(k = 3 \), the above mentioned 4-critical graphs produced by Toft, could be made bipartite by removing \(cn \) edges, for some constant \(c > 0 \). This led Toft to ask whether there exists some constant \(d > 0 \) such that for \(n \) large, there exists a 4-critical graph on \(n \) vertices from which one must remove \(dn^2 \) edges in order to make it 2-colourable. This question was answered by Stiebitz and Rödl.

In 1987, Stiebitz [8], showed the existence of \((k+1)\)-critical graphs, for \(k \geq 3 \), from which one must remove at least \(d_kn^2 \) edges to make them \((k-1)\)-colourable. The graphs that Stiebitz constructed contained many triangles.

At about the same time, Rödl [7] (unpublished) showed that for any \(\ell \geq 3 \) there are 4-critical graphs with odd girth at least \(\ell \), from which one must remove at least \(d_kn^2 \) edges in order to make them 2-colourable.

In this paper, we extend Rödl’s unpublished construction and prove the following theorem:

Theorem 1 For any integers \(k \geq 3 \) and \(\ell \geq 5 \) there exists a constant \(c = c(k, \ell) > 0 \), such that for all \(\tilde{n} \), there exists a \((k+1)\)-critical graph \(G \) on \(n \) vertices with \(n > \tilde{n} \) and odd girth at least \(\ell \), which can be made \((k-1)\)-colourable only by the omission of at least \(cn^2 \) edges.

Recall that by a result of Kővári, Sós, and Turán [5], any graph with more than \(\frac{1}{2}(n^2 + n - \frac{n}{2}) \) edges has a 4-cycle, so we cannot hope to replace ‘odd girth’ in the above theorem with ‘girth’.

Unfortunately, the proof of Theorem 1 gives only a weak lower bound on the constant \(c(k, \ell) \), and we make no effort to evaluate it. In section 5 we give an easy upper bound on \(c(3, \ell) \) as consequence of a result of Andrásfai, Erdős, and Sós [1].

2 Preliminaries

Before we proceed with the proof of Theorem 1 we give two preliminary lemmas that will be used later in the proof. Note that when \(\chi \) is a map with domain \(V \), and \(U \subset V \), we will write \(\chi(U) \) for the set \(\{\chi(u) \mid u \in U\} \).

A set \(\mathcal{A} \) of mappings from \(W \) to \([k]\) is said to be closed under permutations of \([k]\) if for every \(\alpha \in \mathcal{A} \) and any permutation \(\sigma \) of \([k]\), \(\sigma \circ \alpha \in \mathcal{A} \).
We start with Lemma 2 which is a slight variation of a result of Müller [6]. Müller proved that under the assumptions of Lemma 2, conditions (i) and (ii) hold.

Lemma 2 Let \(k, \ell \in \mathbb{N}, k \geq 3, \) and let \(\mathcal{A} \subseteq \{ \alpha \mid \alpha : W \to [k] \} \) be closed under permutation of \([k]\). Then, there exists a \(k \)-chromatic graph \(M = M(W, \mathcal{A}, k, \ell) \), with \(W \subset V(M) \), which satisfies the following properties.

(i) \(g(M) \geq \ell \)

(ii) \(\{ \chi_W \mid \chi \text{ is a } k\text{-colouring of } M \} = \mathcal{A} \)

(iii) The distance between any two vertices of \(W \) is at least \(\ell \).

PROOF.

Given \(k, \ell, \mathcal{A}, \) and \(W \), as in the statement of the lemma, the result in [6] guarantees the existence of a \(k \)-chromatic graph \(M_0 \), with \(W \subset V(M_0) \), which satisfies properties (i) and (ii). To prove the lemma, we will construct a new graph \(M \) from \(M_0 \), which satisfies properties (i) and (ii), and also satisfies property (iii). This construction is a standard technique.

Before we construct \(M \), we will define an auxiliary graph \(R \). First, let \(R' \) be a \((k + 1)\)-critical graph with \(g(R') \geq \ell \); such graphs exist by [3]. Let \(e' = \{x, x'\} \) be an edge of \(R' \). Then \(R' - e' \) is a \(k \)-chromatic graph such that for any \(k \)-colouring \(\chi \) of \(R' - e' \), \(\chi(x) = \chi(x') \). Now let \(R = (R' - e') \cup \{x', y\} \), where \(y \) is a new vertex adjacent to \(x' \). Then the graph \(R \) has \(g(R) \geq \ell \), is \(k \)-chromatic, and has distance \(d_R(x, y) \geq \ell \). Moreover, for any \(k \)-colouring \(\chi \) of \(R \), \(\chi(x) = \chi(x') \neq \chi(y) \).

We now construct the graph \(M \) from \(M_0 \) and several copies of \(R \).

Construction 3 Let \(E_W \) be the set of edges of \(M_0 \) with at least one vertex in \(W \). For each \(e = \{u, w\} \in E_W \), let \(R_e \) be a copy of \(R \), and let \(x_e \) and \(y_e \) denote the copies of \(x \) and \(y \) in \(R_e \). Replace the edge \(e \) in \(M_0 \) with the graph \(R_e \), by identifying \(u \) with \(x_e \) and \(w \) with \(y_e \). Let the resulting graph be called \(M \).

Note that by Construction 3 all of the vertices of \(M_0 \) are vertices of \(M \), and so in particular \(W \subset V(M_0) \subset V(M) \). We now verify that \(M \) satisfies properties (i) - (iii) of the lemma.

(i): Recall that the graph \(M_0 \) and all the copies of \(R \) have girth at least \(\ell \). Therefore, any cycle in \(M \) which is not entirely in \(M_0 \) or a copy of \(R \), must contain the vertices \(x_e \) and \(y_e \) of \(R_e \) for some \(e \in E_W \). Since \(d(x_e, y_e) \geq \ell \) in \(R_e \) and hence in \(M \), it follows that \(g(M) \geq \ell \).
We first show that any k-colouring of M_0, can be extended to a k-colouring of M. Then conversely, we show that any k-colouring of M induces a k-colouring of M_0. This will then give property (ii) since by [6],

$$\{\chi_0|_{W} : \chi_0 \text{ is a } k\text{-colouring of } M_0\} = A.$$

Let χ be a k-colouring of M_0. For any edge $\{a, b\} \in E(M_0)$, we clearly have that $\chi(a) \neq \chi(b)$. Since the only edges of M that are not in M_0 are those which are in copies of R, it remains to show that for any $e = \{u, w\} \in E_w$, χ can be extended to a proper k-colouring of R_e. Since χ is a k-colouring of M_0, and e is in M_0, $\chi(x_e) = \chi(u) \neq \chi(w) = \chi(y_e)$. Since $\chi(x_e) \neq \chi(y_e)$, χ can be extended to a k-colouring of R_e.

On the other hand, let χ be a k-colouring of M. The only edges of M_0 that are not in M are those of E_w, and for any $e = \{u, w\} \in E_w$ we have that $\chi(u) = \chi(x_e) \neq \chi(y_e) = \chi(w)$. Thus χ induces a k-colouring of M_0.

Every edge e, incident to a vertex of W, was replaced in Construction 3 with a copy R_e of R, by identifying the endpoints of e with the vertices x_e and y_e of R_e. Since $d(x_e, y_e) \geq \ell$ in R_e, any two vertices of W in the graph M are also at a distance of at least ℓ.

This completes the proof of the lemma. □

Lemma 2 gives no relation between the size of W and the number of vertices of M. In the proof of Theorem 1 we will need Lemma 4, which is a modification of Lemma 2. In Lemma 4 the number of vertices of the graph will be bounded by a constant (depending only on k and ℓ) times the size of the input set $U \cup \{u^*\}$ (which replaces the set W). It will be sufficient to prove such a strengthening only for sets A of a special form, as specified by condition (ii) below.

Lemma 4 Let $d, k, \ell \in \mathbb{N}$ be such that $d \geq 1$, $k \geq 3$, $\ell \geq 5$, and ℓ is odd. Then there exists a graph $T = T(d, k, \ell)$, with a distinguished subset of vertices $U \cup \{u^*\} \subset V(T)$, where $u^* \not\in U$ and $|U| = k^d$, and a constant $m(k, \ell)$, such that the following properties hold.

(i) $g(T) \geq \ell$

(ii) Any mapping $\chi : U \cup \{u^*\} \rightarrow [k]$ can be extended to a k-colouring of T if, and only if, $\chi(u^*) \in \chi(U)$.

(iii) The distance between any two vertices of $U \cup \{u^*\}$ is at least ℓ.

(iv) $|V(T)| < k^d \cdot m(k, \ell)$
Let k and ℓ be given. Let $V = \{v_1, \ldots, v_k\}$ be a set of independent vertices and let $v \notin V$. Set $W = V \cup \{v\}$ and define the set of mappings
\[
\mathcal{A} = \{\alpha : W \rightarrow [k] \mid \alpha(v) \in \alpha(V)\}.
\]
We now apply Lemma 2 and obtain the graph $M = M(W, \mathcal{A}, k, \ell)$. The graph M thus contains all the vertices of $V \cup \{v\}$ and has the property that $\chi : V \cup \{v\} \rightarrow [k]$ can be extended to a proper k-colouring of M if, and only if, $\chi(v) \in \chi(V)$.

We will construct the graph $T = T(d, k, \ell)$ by taking several copies of the graph M and gluing them together as described in Construction 5 below. The copies of M will be pairwise vertex disjoint except for those vertices identified in Construction 5.

Setup for Construction 5 For all $i = 1, \ldots, d$, let $U^i = \{\xi_1 \ldots \xi_i \mid 1 \leq \xi_j \leq k, \text{ for } j = 1, \ldots, i\}$. Furthermore, let $U = U^d$. We will view U^i as a set of independent vertices, with which we will identify some of the vertices of T.

Construction 5 For all $i = 1, \ldots, d - 1$ and $1 \leq \xi_j \leq k$, where $j = 1, \ldots, i$, let $M_{(\xi_1, \ldots, \xi_i)}$ be a copy of M. For each $M_{(\xi_1, \ldots, \xi_i)}$, identify the copy of V with $\{(\xi_1, \ldots, \xi_i, 1), \ldots, (\xi_1, \ldots, \xi_i, k)\}$ and the copy of v with (ξ_1, \ldots, ξ_i). Moreover, let M_{u^*} be a copy of M where we identify v with u^* and V with U^1.

Observe that with these identifications any two copies of M share at most one vertex (see Figure 1). We verify now that T satisfies properties (i) - (iv) required by the lemma.

(i): Let C be some cycle in T. Since every edge of T is in a copy of M, either
$W = g$ because (because the distance between any two vertices of W is at least ℓ, because $g(M) \geq \ell$ by Lemma 2 (i). In the second case, C has girth at least C because the distance between any two vertices of W is at least ℓ by Lemma 2 (iii). This was for any cycle C in T, so $g(T) \geq \ell$.}

(ii): Let $(1 \ldots 1)$ denote a vector of i ones. By the definition of A from the beginning of the proof, any mapping $\chi : U \cup \{u^*\} \rightarrow [k]$ can be extended to a k-colouring of $M_{(\xi_1 \ldots \xi_i)}$ for all $i = 1, \ldots, d-1$, if and only if

$$\chi((\xi_1 \ldots \xi_i)) \in \{\chi(\xi_1 \ldots \xi_i 1), \ldots, \chi(\xi_1 \ldots \xi_i k)\}. \quad (a)$$

Similarly, χ can be extended to a k-colouring of M_{u^*} if, and only if,

$$\chi(u^*) \in \{\chi(1), \ldots, \chi(k)\}. \quad (b)$$

To prove the ‘only if’ implication of (ii), we consider $\chi : U \cup \{u^*\} \rightarrow [k]$, such that $\chi(u^*) \in \chi(U)$. Assume w.l.o.g. that $\chi(u^*) = 1 = \chi((1 \ldots 1)_d)$, where $(1 \ldots 1)_d \in U$. We must show that χ can be extended to a k-colouring of T.

Proceeding backwards for $i = d-1, \ldots, 1$ we do as follows. We define χ on the set U^i by setting $\chi((\xi_1, \ldots, \xi_i)) = \chi((\xi_1, \ldots, \xi_i, 1))$ for for all $(\xi_1 \ldots \xi_i) \in U^i$. Since this makes (a) true, we can extend χ to a k-colouring of $M_{(\xi_1 \ldots \xi_i)}$ for all $(\xi_1 \ldots \xi_i) \in U^i$. Furthermore, we get that $\chi((1, \ldots, 1)_d) = \chi((1, \ldots, 1)_{d+1}) = 1$. Having done this for $i = 1$, we have $\chi(1) = 1$. Since by assumption $\chi(u^*) = 1$, this makes (b) true, and so we can extend χ to a k-colouring of M_{u^*}. We have thus extended χ to a k-colouring of all of T.

To prove the ‘if’ implication of (ii), let $\chi : U \cup \{u^*\} \rightarrow [k]$ be such that $\chi(u^*) = 1 \notin \chi(U)$. Towards a contradiction, assume that χ can be extended to a k-colouring of T. Since there is a vertex of colour 1 in $\{u^*\}$ and there are none in $U^d = U$, there is a maximal i with $i < d$ such that $1 \in \chi(U^{i-1})$ and $1 \notin \chi(U^i)$. Without loss of generality let $\chi((1 \ldots 1)_{i-1}) = 1$. Thus, $M_{(1 \ldots 1)_{i-1}}$ is k-coloured with $\chi((1 \ldots 1)_{i-1}) = 1$ while,

$$1 \notin \{\chi((1 \ldots 1 1)_i), \ldots, \chi((1 \ldots 1 k)_i)\}.$$

This, however, contradicts property (a).

(iii): Since every edge of T is in a copy of M, the shortest path between two vertices of $U \cup \{u^*\}$ is either completely within some copy of M, or passes through two vertices of $W = V \cup \{v\}$ in some copy of M. Again by Lemma 2
(iii), the length of such a path is at least ℓ.

(iv): Set $m(k, \ell) = |V(M)|/(k - 1)$. Since every vertex of T is in at least one of the $(k^d - 1)/(k - 1)$ copies of M, we have that $|V(T)| \leq \left(\frac{k^d - 1}{k - 1}\right) \cdot |V(M)| < k^d \cdot m(k, \ell)$.

Therefore, properties (i) - (iv) hold, and thus, the proof of the lemma is complete. \square

3 The Graph $\hat{G} = \hat{G}(d, k, \ell)$

In this section, we construct a graph $\hat{G} = \hat{G}(d, k, \ell)$, which depends on the integers d, k, and ℓ. In Lemma 7, we observe some important properties of \hat{G}.

Given k and ℓ, any $(k + 1)$-critical subgraph G of $\hat{G}(d, k, \ell)$, for an appropriate choice of d, will then satisfy the properties of Theorem 1. This will be proved in Section 4.

Graph \hat{G} will be constructed from several components. We now define these components before giving the actual construction.

Setup for Construction 6 Let the integers $k \geq 3$, $\ell \geq 3$ and d be fixed.

(i) Erdős [3] showed that there exist k-critical graphs with girth at least ℓ. Among such graphs let $F = F(k, \ell)$ be one with the fewest vertices (thus F is connected). Set $f(k, \ell) = |V(F)|$ and $V(F) = \{v_1, \ldots, v_{f(k, \ell)}\}$.

(ii) Let F_B be the blowup of F, that is, the graph defined by replacing each vertex $v_i \in V(F)$ with a set B_i, of k^d independent vertices, and each edge $\{v_i, v_j\} \in E(F)$ with the complete bipartite graph between the sets B_i and B_j. In other words, the graph F_B has vertex set $V(F_B) = \bigcup_{i=1}^{f(k, \ell)} B_i$ and edge set

$$E(F_B) = \left\{ \{b_i, b_j\} \mid b_i \in B_i, b_j \in B_j, \{v_i, v_j\} \in E(F) \right\}.$$

(iii) For all $i = 1, \ldots, f(k, \ell)$, let T_i be a copy of the graph $T(d, k, \ell)$ provided by Lemma 4. Let U_i and u^*_i be the copies of U and u^* respectively, in T_i.

(iv) Set $W = \{w_1, \ldots, w_{f(k, \ell)}\}$ and let \mathcal{A} be the set of all mappings $\alpha : W \to [k]$, that are ‘inconsistent with respect to F’; that is, $\alpha \in \mathcal{A}$ if, and only if, the mapping $\chi : V(F) \to [k]$ defined by $\chi(v_i) = \alpha(w_i)$ for all $i = 1, \ldots, f(k, \ell)$, is not a proper k-colouring of F. Let $H = M(W, \mathcal{A}, k, \ell)$
be the k-chromatic graph returned by Lemma 2 for this choice of $\mathcal{A}, k, \ell,$ and $W,$ and set $h(k, \ell) = |V(H)|.$

We now give the construction.

Construction 6 Given integers $d, k,$ and $\ell,$ let $F = F(k, \ell)$ and $f(k, \ell)$ be defined as in item (i) of Setup for Construction 6.

Construct $\hat{G} = \hat{G}(d, k, \ell)$ from pairwise disjoint components $F_B, T_1, \ldots, T_{f(k,\ell)},$ and $H,$ defined in items (ii), (iii) and (iv) of Setup for Construction 6, by making the following identifications.

(i) For $i = 1, \ldots, f(k, \ell),$ identify U_i of T_i with B_i of $F_B.$

(ii) For $i = 1, \ldots, f(k, \ell),$ and $j = 1, \ldots, k^d,$ identify u^{*}_i of T_i with w_i of $H.$

Thus, the graph \hat{G} has vertex set

$$V(\hat{G}) = \bigcup_{i=1}^{f(k,\ell)} V(T_i) \cup (V(H) - W)$$

and edge set

$$E(\hat{G}) = (\bigcup_{i=1}^{f(k,\ell)} E(T_i)) \cup E(F_B) \cup E(H).$$

Set $C(k, \ell) = f(k, \ell) \cdot m(k, \ell) + h(k, \ell)$ where $m(k, \ell)$ is the constant from Lemma 4, which is independent of $d.$ In the following lemma, we observe some important properties of Construction 6.

Lemma 7 Let the integers k and ℓ be given. Let F and $H,$ be as in Setup for Construction 6. Then for any positive integer $d,$ the graph $\hat{G} = \hat{G}(d, k, \ell),$ of Construction 6, has the following properties:

(i) \hat{G} is not k-colourable.

(ii) For any edge $e \in F_B,$ $\hat{G} - e$ is k-colourable.

(iii) \hat{G} has odd girth at least $\ell.$

(iv) $|V(\hat{G})| < C(k, \ell) \cdot k^d.$

(v) \hat{G} cannot be made $(k - 1)$-colourable without removing at least k^{2d} edges of $F_B.$

Proof. We will now show that for any positive integer $d,$ the graph $\hat{G} = \hat{G}(d, k, \ell)$ satisfies properties (i) - (v).

(i) \hat{G} is not k-colourable.
Towards a contradiction, assume that \hat{G} has a k-colouring χ. For $i = 1, \ldots, f(k, \ell)$, χ induces a k-colouring of T_i, so by property (ii) of Lemma 4, $\chi(u_i^*) \in \chi(U_i)$. By the identification of u_i^* with w_i, and U_i with B_i, there is thus some $b_i \in B_i$ such that $\chi(w_i) = \chi(b_i)$.

The set of vertices $\{b_i \mid i = 1, \ldots, f(k, \ell)\}$ induces a copy F_1, of F, in \hat{G}, and χ induces a k-colouring of F_1. Thus, by the definition of A in Setup for Construction 6 (iv), χ restricted to $W = \{w_1, \ldots, w_{f(k, \ell)}\}$ is not in A. This contradicts the fact that χ induces a k-colouring of H. Therefore, \hat{G} is not k-colourable.

(ii) For any edge $e \in F_B$, $\hat{G} - e$ is k-colourable.

Without loss of generality assume that $e = \{b_1, b_2\}$, where b_1 is in B_1 and b_2 is in B_2. Recall that F_B is the blowup of F, so B_1 and B_2 correspond to vertices v_1 and v_2 in F.

Since $g(F) = \ell \geq 5$ there is some vertex v_i of F that is distance at least two from both vertices v_1 and v_2. Assume, w.l.o.g., that $i = f(k, \ell)$. Thus, there are no edges from $B_{f(k, \ell)}$ to B_1 or B_2. Since F is k-critical, there exists a k-colouring χ' of the graph F in which the only vertex that gets the colour k is $v_{f(k, \ell)}$.

Consequently, setting

(a) $\chi(b) = \chi'(v_i)$ where $b \in B_i$, for any $b \in V(F_B) - \{b_1, b_2\}$, and
(b) $\chi(b_1) = \chi(b_2) = k$,

defines a k-colouring χ of $F_B - e$. Since U_i is identified with the vertex set B_i of F_B, this defines χ on U_i for all $i = 1, \ldots, f(k, \ell)$.

We then extend χ to the rest of $\hat{G} - e$ as follows.

(e) For $i = 1, 2$, since $k \in \chi(U_i)$, we can extend χ to a k-colouring of T_i in which $\chi(u_i^*) = k$.
(f) For $i \neq 1, 2$, we extend χ to any k-colouring of T_i.
(g) The vertices w_1 and w_2, by their identification with u_1^* and u_2^*, both get the colour k under χ. Since $\{v_1, v_2\}$ is an edge in F, χ then induces on $\{w_1, \ldots, w_{f(k, \ell)}\}$ a mapping that is inconsistent with F. Thus, by the choice of A in Construction 6 (iii), χ can be extended to a k-colouring of H.

This exhibits a k-colouring of $\hat{G} - e$, so $\hat{G} - e$ is k-colourable.
(iii) \hat{G} has odd girth at least ℓ.

First note that the components of \hat{G}: the blowup F_B, the graphs T_i, for all $i = 1, \ldots, f(k, \ell)$, and the graph H, have odd girth at least ℓ. Now let C be some odd cycle of \hat{G} that is not completely contained within one of the above components. The cycle C must contain a vertex v in $V(T_i) - (V(B) \cup V(H))$ for some i. Since the cycle C is not entirely within the graph T_i, v must be contained on a path of C containing at least two vertices of $U_i \cup \{u^*_i\}$. By property (iii) of Lemma 4 these vertices are at least a distance ℓ apart. Thus C must have length at least ℓ.

(iv) $|V(\hat{G})| < C(k, \ell) \cdot k^d$.

Since every vertex of F_B was identified with a vertex of T_i, for some $i \in \{1, \ldots, f(k, \ell)\}$, and \hat{G} was constructed from F_B, H, and $f(k, \ell)$ copies of T each of which had $|V(T)| < k^d \cdot m(k, \ell)$ vertices by Lemma 4 (iv), it follows that $|V(\hat{G})| < f(k, \ell) \cdot k^d \cdot m(k, \ell) + h(k, \ell) < C(k, \ell) \cdot k^d$.

(v) \hat{G} cannot be made $(k-1)$-colourable without removing at least k^{2d} edges of F_B.

To allow the graph \hat{G} to be $(k-1)$-colourable, we need to remove at least one edge from each copy of F. Restricting our attention to copies of F in $F_B \subset \hat{G}$ with at most one vertex in each set B_i, we find that there are at least $(k^d)^{f(k,\ell)}$ copies of F. As any edge in F_B is in at most $(k^d)^{f(k,\ell)-2}$ of these copies of F, we need to remove at least k^{2d} edges to be sure we have removed at least one from each copy of F. \hfill \Box

4 Proof of Theorem 1

We now proceed with the proof of the main theorem.

PROOF. Given $k \geq 3$ and $\ell \geq 5$, let $f(k, \ell)$ and F_B be as in Setup for Construction 6 (i) and (ii), and let $C(k, \ell)$ be the constant from Lemma 7. Set $c(k, \ell) = \left(\frac{1}{C(k,\ell)}\right)^2$. For \tilde{n} given, let d be any integer such that

$$\tilde{n} \leq f(k, \ell) \cdot k^d.$$

Let G be a $(k + 1)$-critical subgraph of the graph $\hat{G} = \hat{G}(d, k, \ell)$ provided by Construction 6, and let $n = |V(G)|$. Note that by property (ii) of Lemma 7,
G has all the vertices and the edges of F_B. Therefore,
\[f(k, \ell) \cdot k^d \leq n, \]
and by property (v) of Lemma 7, we must remove at least k^{2d} edges to make G $(k-1)$-colourable. Since property (iii) of Lemma 7 gives that the odd girth of G is at least ℓ, it follows that the same holds for the odd girth of G. Furthermore,
\[n \leq |V(\hat{G})| < C(k, \ell) \cdot k^d \]
by property (iv) of Lemma 7, and thus the choice of $c(k, \ell)$ yields that
\[c(k, \ell) \cdot n^2 = \left(\frac{1}{C(k, \ell)} \right)^2 \cdot n^2 < k^{2d}. \]
Therefore, we must remove at least $c(k, \ell) \cdot n^2$ edges from G to make it $(k-1)$-colourable. We have now verified all the necessary properties and thus the proof is complete. \(\square \)

5 Concluding Remarks

The construction of the graph \hat{G} together with Theorem 1 gives a lower bound for the constant c. It may be of interest to obtain a better estimate. A straightforward upper bound on $c(3, \ell)$ follows from a result of Andrásfai, Erdős, and Sós [1] who proved that every nonbipartite graph G on n vertices with odd girth at least ℓ, must have minimum degree $\delta \leq \frac{2}{\ell} \cdot n$. Indeed, sequentially deleting vertices of minimum degree as long as each remaining graph is nonbipartite, we delete at most
\[2\left(\frac{n}{\ell} + \frac{n-1}{\ell} + \cdots + \frac{1}{\ell} \right) \approx \frac{n^2}{\ell} \]
edges. Thus, $c(3, \ell) \leq \left(1 + o(1) \right)/\ell$, where $o(1)$ is a function of n that goes to 0 as n goes to infinity.

References

[1] B. Andrásfai, P. Erdős and V. Sós,

[2] G. A. Dirac,
[3] P. Erdős,

[4] P. Erdős,

[6] V. Müller,

[7] V. Rödl,

[8] M. Stiebitz,

[9] B. Toft,